13 research outputs found

    Pregnant Females as Historical Individuals: An Insight From the Philosophy of Evo-Devo

    Get PDF
    Criticisms of the "container" model of pregnancy picturing female and embryo as separate entities multiply in various philosophical and scientific contexts during the last decades. In this paper, we examine how this model underlies received views of pregnancy in evolutionary biology, in the characterization of the transition from oviparity to viviparity in mammals and in the selectionist explanations of pregnancy as an evolutionary strategy. In contrast, recent evo-devo studies on eutherian reproduction, including the role of inflammation and new maternal cell types, gather evidence in favor of considering pregnancy as an evolved relational novelty. Our thesis is that from this perspective we can identify the emergence of a new historical individual in evolution. In evo-devo, historical units are conceptualized as evolved entities which fulfill two main criteria, their continuous persistence and their non-exchangeability. As pregnancy can be individuated in this way, we contend that pregnant females are historical individuals. We argue that historical individuality differs from, and coexists with, other views of biological individuality as applied to pregnancy (the physiological, the evolutionary and the ecological one), but brings forward an important new insight which might help dissolve misguided conceptions.LN's work was funded by two fellowships (FJCI-2014-22685 and IJCI-2017-34092) and two research projects funded by the Spanish Ministry of Economy and Competitiveness (FFI2017-87193-P and PGC2018-099423-B-I00). MP acknowledges support from the March of Dimes Prematurity Research Center Ohio Collaborative. LN and MP were also partially supported by the Center for Advanced Study at the Norwegian Academy of Science and Letters, in the framework of a project on evolvability. AE is grateful for funding from the IT 1228-19 "Grants for Research Groups" of the Basque Government, and two projects by the Ministry of Economy and Competitiveness (FFI2014-52173-P and PID2019-104576GB-I00)

    Development shapes a consistent inbreeding effect in mouse crania of different line crosses

    Get PDF
    Development translates genetic variation into a multivariate pattern of phenotypic variation, distributing it among traits in a nonuniform manner. As developmental processes are largely shared within species, this suggests that heritable phenotypic variation will be patterned similarly, in spite of the different segregating alleles. To investigate developmental effect on the variational pattern in the shape of the mouse skull across genetically differentiated lines, we employed the full set of reciprocal crosses (a.k.a. diallel) between eight inbred mouse strains of the Collaborative Cross Project. We used geometric morphometrics and multivariate analysis to capture cranial size and shape changes in 8 parentals and their 54 F1 crosses. The high heterozygosity generated in the F1 crosses allowed us to compare the multivariate deviations of the F1 phenotypes from the expected midparental phenotypes in different haplotype combinations. In contrast to body weight, we found a high degree of nonadditive deviation in craniofacial shape. Whereas the phenotypic and genetic divergence of parental strains manifested in high dimensionality of additive effects, the nonadditive deviations exhibited lesser dimensionality and in particular a strikingly coherent direction in shape space. We interpret this finding as evidence for a strong structuring effect of a relatively small set of developmental processes on the mapping of genetic to phenotypic variation.Instituto de Genética Veterinari

    A common allele increases endometrial Wnt4 expression, with antagonistic implications for pregnancy, reproductive cancers, and endometriosis

    No full text
    Abstract The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues
    corecore