44 research outputs found

    Ni+-irradiated InGaAs/GaAs quantum wells: picosecond carrier dynamics

    Get PDF
    Room-temperature carrier dynamics as functions of heavy-ion implantation and subsequent thermal annealing were investigated for technologically important InGaAs/GaAs quantum wells (QWs) by means of a time-resolved up-conversion method. Sub-picosecond lifetimes were achieved at 10 MeV Ni+ doses of (20-50) x 1010 ions cm-2. The decay rates reached a maximum at the highest irradiation dose, yielding the shortest lifetime of the confined QW states of 600 fs. A simple theoretical model is proposed for the photodynamics of the carriers. The relaxation rate depended on the irradiation dose according to a power law of 1.2, while the irradiated and subsequently annealed samples exhibited a power law of 0.35. The results are qualitatively interpreted.Room-temperature carrier dynamics as functions of heavy-ion implantation and subsequent thermal annealing were investigated for technologically important InGaAs/GaAs quantum wells (QWs) by means of a time-resolved up-conversion method. Sub-picosecond lifetimes were achieved at 10 MeV Ni+ doses of (20-50) x 1010 ions cm-2. The decay rates reached a maximum at the highest irradiation dose, yielding the shortest lifetime of the confined QW states of 600 fs. A simple theoretical model is proposed for the photodynamics of the carriers. The relaxation rate depended on the irradiation dose according to a power law of 1.2, while the irradiated and subsequently annealed samples exhibited a power law of 0.35. The results are qualitatively interpreted.Room-temperature carrier dynamics as functions of heavy-ion implantation and subsequent thermal annealing were investigated for technologically important InGaAs/GaAs quantum wells (QWs) by means of a time-resolved up-conversion method. Sub-picosecond lifetimes were achieved at 10 MeV Ni+ doses of (20-50) x 1010 ions cm-2. The decay rates reached a maximum at the highest irradiation dose, yielding the shortest lifetime of the confined QW states of 600 fs. A simple theoretical model is proposed for the photodynamics of the carriers. The relaxation rate depended on the irradiation dose according to a power law of 1.2, while the irradiated and subsequently annealed samples exhibited a power law of 0.35. The results are qualitatively interpreted.Peer reviewe

    A Sizer model for cell differentiation in Arabidopsis thaliana root growth

    Get PDF
    Plant roots grow due to cell division in the meristem and subsequent cell elongation and differentiation, a tightly coordinated process that ensures growth and adaptation to the changing environment. How the newly formed cells decide to stop elongating becoming fully differentiated is not yet understood. To address this question, we established a novel approach that combines the quantitative phenotypic variability of wild-type Arabidopsis roots with computational data from mathematical models. Our analyses reveal that primary root growth is consistent with a Sizer mechanism, in which cells sense their length and stop elongating when reaching a threshold value. The local expression of brassinosteroid receptors only in the meristem is sufficient to set this value. Analysis of roots insensitive to signaling and of roots with gibberellin biosynthesis inhibited suggests distinct roles of these hormones on cell expansion termination. Overall, our study underscores the value of using computational modeling together with quantitative data to understand root growth

    The influence of the axial magnetic field upon the low voltage electric arc in vacuum

    No full text
    corecore