839 research outputs found

    Surface-confined 2D polymerization of a brominated copper-tetraphenylporphyrin on Au(111)

    Get PDF
    A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300{\deg}C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characterized using scanning tunneling microscopy. Different kinds of lattice defects and, furthermore, the impact of polymerization on the HOMO-LUMO gap are discussed. Density functional theory calculations corroborate the interpretations and give further insight into the adsorption of the debrominated molecule on the surface and the geometry and coupling reaction of the polymeric structure.Comment: 9 pages, 6 figure

    Interaction Of Porphyrins With A Dendrimer Template: Self-aggregation Controlled By Ph

    Get PDF
    The interaction between self-aggregated porphyrins such as 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and 5,10,15,20-tetrakis(4-phosphonatophenyl)porphyrin (TPPP), and a generation 5 (G5) PAMAM dendrimer template is governed by minute differences of porphyrin acido-basic properties. While at neutral pH both monomeric TPPS and TPPP form complexes with G5, decreasing pH did not lead to porphyrin ring protonation (pK(a) approximate to 5) but rather to the preferential formation of H-aggregates (probably H-dimers), most likely due to protonation of the G5. Upon further acidification of the solution, this face-to-face orientation of the porphyrin units is being converted to edge-to-edge aligned J-aggregates with a tightly defined structure. This process starts by protonation of the porphyrin ring at pH below 2.3 and 2.8 for TPPS and TPPP, respectively. The AFM imaging of porphyrin/G5 nanostructures obtained at pH 0.7 shows the formation of long nanorods of TPPS with partially aggregated G5 and small aggregates of TPPP connected to individual G5 molecules

    Preprogramming Of Porphyrin-nucleic Acid Assemblies Via Variation Of The Alkyl/aryl Substituents Of Phosphonium Tetratolylporphyrins

    Get PDF
    Cationic alkyl/arylphosphonium meso-tetratolylporphyrins aggregate in an aqueous solution to form H-aggregates, J-aggregates, and long-range assemblies. The ratio between the monomer and various types of aggregates can be controlled by the substitution in the phosphonium units and by the ionic strength. A trimethylphosphonium derivative is predominantly monomeric, dimethylphenylphosphonium forms monomers as well as low-molecular-weight H- and J-aggregates, triphenylphosphonium forms mainly H- and J-aggregates, and tri(n-butyl)phosphonium forms mainly long-range assemblies. Porphyrin monomers associate with calf thymus DNA (binding constant Kb approximate to 10(7) M-1) and oligonucleotides (K-b approximate to 10(5-)10(6) M-1). The large size of the meso-substituents prevents the intercalation between base pairs. All phosphonium porphyrins described in this study were found to bind to the phosphate backbone of a nucleic acid with a significant preference for A-T base pair sequences. Porphyrin aggregates formed in the solution deposit readily on the surface of the DNA and oligonucleotides without changing their structure and size. Porphyrin monomers bound to DNA and nucleotides have photophysical properties (higher quantum yield of triplet states and singlet oxygen) different from those of porphyrin aggregates

    Self-aggregates Of Cationic Meso-tetratolylporphyrins In Aqueous Solutions

    Get PDF
    Aggregation properties of meso-tetratolylporphyrins bearing cationic substituents of a lipophilic nature such as ammonium, pyridinium, phosphonium, sulfonium, and isothiouronium were studied by UV/vis and resonance light scattering spectroscopy. The exciton point-dipole approximation was used to predict the structural alignment of the porphyrin units within the aggregate. The contribution of various types of aggregates depends on the porphyrin substitution, ionic strength, and temperature of aqueous solution of the porphyrin. In general, the preferred structure of an aggregate formed by temperature-induced aggregation is the J-aggregate exhibiting the characteristically narrow, red-shifted Soret band indicating a parallel side-by-side arrangement of the porphyrin units. The formation of aggregates of cationic tetratolylporphyrins is controlled by both electrostatic and hydrophobic interactions, Observed aggregation properties of porphyrin derivatives bearing trimethylammonium, trimethylphosphonium, pyridinium, dimethylphenylphosphonium, and triphenylphosphonium substituents are in very good agreement with a theoretical model based solely on electrostatic interactions

    Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes

    Get PDF
    We have designed, fabricated and tested a real-time PCR chip capable of conducting one thermal cycle in 8.5 s. This corresponds to 40 cycles of PCR in 5 min and 40 s. The PCR system was made of silicon micromachined into the shape of a cantilever terminated with a disc. The thin film heater and a temperature sensor were placed on the disc perimeter. Due to the system's thermal constant of 0.27 s, we have achieved a heating rate of 175°C s−1 and a cooling rate of −125°C s−1. A PCR sample encapsulated with mineral oil was dispensed onto a glass cover slip placed on the silicon disc. The PCR cycle time was then determined by heat transfer through the glass, which took only 0.5 s. A real-time PCR sample with a volume of 100 nl was tested using a FAM probe. As the single PCR device occupied an area of only a few square millimeters, devices could be combined into a parallel system to increase throughput
    corecore