86 research outputs found

    Evidence of the excitation of a ring-like gravity wave in the mesosphere over the Andes Lidar Observatory

    Get PDF
    On 23 March 2012, our all-sky imager recorded a concentric, ring-like gravity wave pattern. The wave arose within the area covered by images of both OH and O(1S) nightglow emissions taken at the Andes Lidar Observatory (ALO), Chile (30.3ÁS, 70.7ÁW). We have estimated the observed and intrinsic parameters of the event and located the wave source within the lower mesosphere altitude range using a reverse ray tracing method. By the analysis of GOES and LIS satellite images, we have not found evidence of neither convective nor lightning activity nearby ALO, indicating that the source of the ring-like wave was not directly in the troposphere. The absence of tropospheric activity and the height of the source of the event suggest that a secondary wave generation mechanism might be the cause of the ring-like wave. The secondary wave mechanism was likely triggered by a breaking, larger-scale primary wave excited by deep convection _1400ækm northeast of ALO over Bolivia, as determined by a forward ray tracing scheme. ©2016. American Geophysical Union. All Rights Reserved

    First Observed Temporal Development of a Noctilucent Cloud Ice Void

    Get PDF
    Noctilucent clouds are ice clouds that appear high in the atmosphere, about 80 km above the summer pole. By observing them we have learned a lot about the remote and inaccessible region where they form. Recently, a satellite borne instrument discovered nearly circular ice-free regions within the clouds, denoted as “ice voids.” The origin of these voids is a mystery—we do not know what causes the clouds to disappear in large circular areas. So far these voids have only been observed from satellites, which only can take pictures of the clouds when they pass above once every 1.5 hr—longer than most ice voids exist. This means that until now we completely lack observations of the development and disappearance of the voids. Here we therefore present the first full temporal development of a void, as observed by our ground-based camera taking images every 30 s. Surprisingly, the void did not drift with the wind as cloud features around it, but it remained notably stationary for approximately 1 hr. These observations give important clues to help us solve the mystery of the origin of these voids—they suggest a steady local heating of the atmosphere as the cause

    Electron Densities in the Lower Thermosphere From GUVI 135.6 nm Tomographic Inversions in Support of SpreadFEx

    Get PDF
    The SpreadFEx campaign was conducted with the goal of investigating potential neutral atmospheric dynamics influences in seeding plasma instabilities and bubbles extending to higher altitudes from September to November 2005, with primary measurements in Brazil. In this paper, we present the results of space-based UV and ground-based optical observations in support of this campaign. Specifically, we present multi-dimensional electron density images obtained tomographically from the 135.6 nm emissions measured by the GUVI instrument aboard the TIMED satellite that result from radiative recombination of O+ and compare those with the corresponding 630.0 nm OI images recorded in the Brazilian sector. The GUVI results provide altitude vs. longitude information on depleted regions in the ionospheric plasma density that are complementary to the single-height latitude-longitude images obtained with the airglow imager

    Regional Distribution of Mesospheric Small‐Scale Gravity Waves During DEEPWAVE

    Get PDF
    The Deep Propagating Gravity Wave Experiment project took place in June and July 2014 in New Zealand. Its overarching goal was to study gravity waves (GWs) as they propagate from the ground up to ~100 km, with a large number of ground‐based, airborne, and satellite instruments, combined with numerical forecast models. A suite of three mesospheric airglow imagers operated onboard the NSF Gulfstream V (GV) aircraft during 25 nighttime flights, recording the GW activity at OH altitude over a large region (\u3e7,000,000 km2). Analysis of this data set reveals the distribution of the small‐scale GW mean power and direction of propagation. GW activity occurred everywhere and during every flight, even over open oceans with no neighboring tropospheric sources. Over the mountainous regions (New Zealand, Tasmania, isolated islands), mean power reached high values (more than 100 times larger than over the waters), but with a considerable variability. This variability existed from day to day over the same region, but even during the same flight, depending on forcing strength and on the middle atmosphere conditions. Results reveal a strong correlation between tropospheric sources, satellite stratospheric measurements, and mesosphere lower thermosphere airglow observations. The large‐amplitude GWs only account for a small amount of the total (~6%), even though they carry the most momentum and energy. The weaker wave activity measured over the oceans might originate from distance sources (polar vortex, weather fronts), implying that a ducted mechanism helped for their long range propagation

    Chemical and dynamical processes in the mesospheric emissive layer. First results of stereoscopic observations

    Get PDF
    [1] The mesospheric emissive layer is an efficient tracer of the dynamical processes propagating in the atmosphere at that level. CCD images in the near infrared taken from the ground at slant angles often reveal the existence of wavy fields. A series of such images has been transformed, using matrix operations, producing a downward satellite-type view that covers a circular area of radius ∼1000 km at the altitude of the layer. The Fourier characteristics of the wave system are measured using a Morlet-type wavelet generator function with horizontal wavelengths of mostly ∼20–40 km and 100–150 km and temporal periods of ∼15–30 min. An oxygen-hydrogen model is used to evaluate the response of the emissive layer to a progressive density wave. The altitude of the layer is modulated with an amplitude of ∼0.8–1.8 km when a density wave propagates vertically. The layer thickness is slightly modulated and is equal to ∼7 km. Stereoscopic pairs of photographs taken simultaneously on 8–9 September 2000 at the Château-Renard and Pic du Midi observatories are used to obtain surface maps of the emission layer barycenter altitude. A stereocorrelation method suitable for low contrast objects without discrete contours is employed. Preliminary results for areas ∼50 × 50 km2 are presented. The surface maps of the layer barycenter altitude depict the existence of waves. They show the same wavy structure and compare favorably with the maps showing the emission intensity

    A coordinated investigation of the gravity wave breaking and the associated dynamical instability by a Na lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (41.7°N, 111.8°W)

    Get PDF
    The impacts of gravity wave (GW) on the thermal and dynamic characteristics within the mesosphere/lower thermosphere, especially on the atmospheric instabilities, are still not fully understood. In this paper, we conduct a comprehensive and detailed investigation on one GW breaking event during a collaborative campaign between the Utah State University Na lidar and the Advanced Mesospheric Temperature Mapper (AMTM) on 9 September 2012. The AMTM provides direct evidence of the GW breaking as well as the horizontal parameters of the GWs involved, while the Na lidar\u27s full diurnal cycle observations are utilized to uncover the roles of tide and GWs in generating a dynamical instability layer. By studying the changes of the OH layer peak altitude, we located the wave breaking altitude as well as the significance of a 2 h wave that are essential to this instability formation. By reconstructing the mean fields, tidal and GW variations during the wave breaking event, we find that the large-amplitude GWs significantly changed the Brunt–Vaisala frequency square and the horizontal wind shear when superimposed on the tidal wind, producing a transient dynamic unstable region between 84 km and 87 km around 11:00 UT that caused a subsequent small-scale GW breaking

    Mountain Wave Propagation under Transient Tropospheric Forcing: A DEEPWAVE Case Study

    Get PDF
    The impact of transient tropospheric forcing on the deep vertical mountain wave propagation is investigated by a unique combination of in-situ and remote-sensing observations and numerical modeling. The temporal evolution of the upstream low-level wind follows approximately a cos2 shape and was controlled by a migrating trough and connected fronts. Our case study reveals the importance of the time-varying propagation conditions in the upper troposphere, lower stratosphere (UTLS). Upper-tropospheric stability, the wind profile as well as the tropopause strength affected the observed and simulated wave response in the UTLS. Leg-integrated along-track momentum fluxes (−MFtrack) and amplitudes of vertical displacements of air parcels in the UTLS reached up to 130 kN m−1 and 1500 m, respectively. Their maxima were phase-shifted to the maximum low-level forcing by ≈ 8 h. Small-scale waves (λx ≈ 20–30 km) were continuously forced and their flux values depended on wave attenuation by breaking and reflection in the UTLS region

    Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements

    Get PDF
    A new methodology is presented to create two-dimensional (2D) and three-dimensional (3D) tomographic reconstructions of mesospheric airglow layer structure using two-station all-sky image measurements. A fanning technique is presented that produces a series of cross-sectional 2D reconstructions, which are combined to create a 3D mapping of the airglow volume. The imaging configuration is discussed and the inherent challenges of using limited-angle data in tomographic reconstructions have been analyzed using artificially generated imaging objects. An iterative reconstruction method, the partially constrained algebraic reconstruction technique (PCART), was used in conjunction with a priori information of the airglow emission profile to constrain the height of the imaged region, thereby reducing the indeterminacy of the inverse problem. Synthetic projection data were acquired from the imaging objects and the forward problem to validate the tomographic method and to demonstrate the ability of this technique to accurately reconstruct information using only two ground-based sites. Reconstructions of the OH airglow layer were created using data recorded by all-sky CCD cameras located at Bear Lake Observatory, Utah, and at Star Valley, Wyoming, with an optimal site separation of ~100 km. The ability to extend powerful 2D and 3D tomographic methods to two-station ground-based measurements offers obvious practical advantages for new measurement programs. The importance and applications of mesospheric tomographic reconstructions in airglow studies, as well as the need for future measurements and continued development of techniques of this type, are discussed. © 2012 Optical Society of America

    An Advanced Mesospheric Temperature Mapper for high-latitude airglow studies

    Get PDF
    Over the past 60 years, ground-based remote sensing measurements of the Earth’s mesospheric temperature have been performed using the nighttime hydroxyl (OH) emission, which originates at an altitude of ∼87  km∼87  km. Several types of instruments have been employed to date: spectrometers, Fabry–Perot or Michelson interferometers, scanning-radiometers, and more recently temperature mappers. Most of them measure the mesospheric temperature in a few sample directions and/or with a limited temporal resolution, restricting their research capabilities to the investigation of larger-scale perturbations such as inertial waves, tides, or planetary waves. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ∼1.5  μm)∼1.5  μm) to create intensity and temperature maps of the mesosphere around 87 km. The data are obtained with an unprecedented spatial (∼0.5  km∼0.5  km) and temporal (typically 30″) resolution over a large 120° field of view, allowing detailed measurements of wave propagation and dissipation at the ∼87  km∼87  km level, even in the presence of strong aurora or under full moon conditions. This paper describes the AMTM characteristics, compares measured temperatures with values obtained by a collocated Na lidar instrument, and presents several examples of temperature maps and nightly keogram representations to illustrate the excellent capabilities of this new instrument
    corecore