101 research outputs found

    Nanoparticle Release from Thermal Decomposition of Polymer Nanocomposites and the Biological Potential of the Emissions

    Get PDF
    Adding nanoparticles to polymers improves the properties significantly, such as UV resistance or even electrical conductivity. The growing use of these composite materials leads to a higher amount in disposals eventually. Within the circular economy there are two ways of handling: the recycling by shredding and reuse and the thermal treatment by combustion in municipal waste incinerators. In both cases there is nearly no information about the behavior of the nanoparticles and possible release scenarios. In this study a laboratory burner is used as a flexible set up to incinerate the polymer nanocomposites. The flue gas containing a complex mixture of combustion gases and particles is characterized by different particle analysers, PAH analysis, VOC analysis and TEM. The biological impact is studied by using a VITROCELL Automated ALI exposure station. Hereby, cells of the adenocarcino cell line A549 as well as a reconstituted bronchial epithelium (MucilAir, Epithelix) were exposed for 4 hours to the aerosols emitted from the combustion process. Within the exposure process, cells were exposed to the native aerosol, an aerosol under conditions to increase particle deposition via high voltage as well as a filtered aerosol, and therefore the sole gaseous phase. Furthermore, each exposure included a so-called clean air control, where cells where exposed to filtered air. The exposure was followed by a 21 h post-incubation before the cytotoxic effects were determined via LDH-release. To reveal if possible adverse effects are caused by the used nano-scaled filling material, all used nanomaterials did also undergo the same combustion process as a single material. Cytotoxicity studies showed no increased cytotoxic effects after the combustion of the sole nano-scaled filling materials. However, combustion of PE containing materials resulted in an enhanced LDH-release, and therefore cytotoxicity, in both cell culture models. Since no difference between exposures of unfiltered and filtered aerosols was apparent, it suggested that the observed cytotoxicity is due to the combustion induced gaseous phase

    Testing of Aerosols for Lung Toxicity by In-Vitro Studies at the Air-Liquid Interface for up to 24 Hours

    Get PDF
    The state of the art of studying the health effects of aerosols in vitro is based on submerged exposure of collected particulate matter, suspended in culture medium. However, this method neglects the gas phase including their interactions with particles and cells. It may change the properties of the investigated particles and does not represent the actual process in the human lung. Exposure at the Air-Liquid Interface (ALI) avoids these disadvantages, but requires a comprehensive system to guarantee reproducible conditions. Therefore, KIT and VITROCELL Systems developed a fully automated ALI exposure station. The exposure station offers a complete measurement system for parallel exposure of up to 24 human lung cell cultures towards gases, nanoparticles and complex mixtures such as combustion aerosols. The aerosol flow, temperature, and humidity are adjusted to the conditions resembling the human lung. An internal negative control using humidified synthetic air is also implemented and the particle dose per time can be increased by electrostatic particle deposition. The particle mass per area deposited by diffusional as well as by electrostatic mechanism is monitored online using a quartz crystal microbalance. Additionally, a new tool to reproducibly expose sample grids for transmission electron microscopy was developed and applied. Image evaluation of TEM images delivers dose information with respect to the spatial distribution and the agglomeration state of the deposited particles. Applications of the ALI exposure station are environmental atmospheres and technical emission sources like marine diesel engines or wood combustion. Long-term stability of A549 lung cells was examined for exposure times up to 24 hours by exposing A549 cell cultures towards clean air as well as towards airborne titanium dioxide and copper oxide nanoparticles. Dose measurement data and biological responses as viability (AlamarBlue assay), cytotoxicity (LDH release), and release of cytokines during long-term exposure are reported
    • …
    corecore