

Karlsruher Institut für Technologie

Institut für Technische Chemie (ITC) Prof. Dr.-Ing Dieter Stapf

Thermische Stabilität von Nanopartikeln und Freisetzungsuntersuchungen an einer Sonderabfallverbrennungsanlage

N. Teuscher, W. Baumann, M. Hauser, I.-M. Lang, H.-R. Paur, D. Stapf

Untersuchungen zum Verhalten von Nanopartikeln (NP) bei der Verbrennung

5,35.10-2

9,13.10-2

8,87·10⁻²

12,5

15

2,67·10⁶

9,20·10⁵

3,45·10⁵

			•		•				·
17	' ,5	7,66-10 ⁻²	1,29 - 10 ⁵	86	1,6	99,91	5,8	1,27	0,09
2	0	6,83·10 ⁻²	3,29 · 10 ⁴	87	1,63	99,99	5	1,23	0,01
22	2,5	5,43·10 ⁻²	1,76 · 10 ⁴	89	1,58	100	4,7	1,2	0

1,8

1,66

1,67

78

79

82

Verdampfung und Nukleation des Partikelmaterials

Untersuchungen zur NP-Freisetzung an einer SAV

Messstellen und Temperaturen in der SAV

82,93

98,37

99,68

11,6

8

6,5

1,49

1,35

1,3

17,07

1,63

0,32

www.kit.edu

Messstelle	Position	Temperatur
Tracerdosierung	Nachbrennkammer	max. 1.100 °C
M1	Abhitzekessel (4. Zug)	530 bis 580°C
M2	Kesselaustritt	300 - 350 °C
M3	nach Elektrofilter	120 °C
M4	Kamin	150 °C

Bilanzierung der SAV mittels Ceroxid

- Ceroxid-Suspension wird in die Nachbrennkammer dosiert
- Alle relevanten Stoffströme werden beprobt und mittels ICP-MS auf Cer untersucht
- Der Hintergrund an Cer beträgt nach Kessel weniger als 0,5 μ g/m_N³ und bei Dosierung erhöht sich die Cerkonzentration über Faktor 1000

Fazit

- Untersuchungen in der Laborflamme zeigen bei hoher Temperatur die Bildung eines neuen Peaks aufgrund von Verdampfung und anschließender Nukleation
- Die Abscheideleistung für Flugstaub und NP-Tracer ist > 99,9 %
- Die Wiederfindung des NP-Tracers an der RVA liegt bei über 80 %

Ausblick

- Untersuchungen zum Verständnis des Mechanismus bei der therm. Behandlung von NP
- Peakbildung hängt nicht nur von der Temperatur, sondern auch vom Wassergehalt ab \rightarrow Untersuchungen mit einer "wasserfreien" Flamme, wie CO oder NO

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft