ANALYSIS AND TOXICOLOGICAL EVALUATION OF DUSTS FROM **RECYCLING AND THERMAL DECOMPOSITION OF NANOCOMPOSITES** AND STRATEGIES FOR RISK MINIMIZATION - PROCYCLE

NANOPARTICLE RELEASE FROM THERMAL DECOMPOSITION OF POLYMER NANOCOMPOSITES AND THE BIOLOGICAL POTENTIAL **OF THE EMISSIONS**

¹Sonja Mülhopt, ¹Nadine Teuscher, ²Matthias Hufnagel, ³Nadja Wingert, ¹Werner Baumann, ¹Manuela Hauser, ³Manuel Garcia-Käufer, ⁴Christoph Schlager, ⁴Markus Berger, ⁴Tobias Krebs, ¹Hanns-Rudolf Paur, ³Richard Gminski, ²Andrea Hartwig, ¹Dieter Stapf ¹Karlsruhe Institute of Technology KIT, Institute for Technical Chemistry ITC, Eggenstein-Leopoldshafen, Germany ²Karlsruhe Institute of Technology KIT, Institute of Applied Biosciences IAB, Karlsruhe, Germany ³Universitätsklinikum Freiburg, Institut für Infektionsprävention und Krankenhaushygiene, Freiburg, Germany ⁴VITROCELL Systems GmbH, Waldkirch/Germany

Objectives

- Nanoparticle behavior in combustion processes of nanocomposites **
- Health effects of nanoparticle emissions from combustion processes of nanocomposites ** materials

Challenges

- Combustion of Nanomaterials (NM) and Nanocomposites *
- Nanoparticle detection *
- Realistic exposure of human lung cells towards the combustion aerosols **
- Dose determination at the Air-Liquid-Interface of human lung cells **
- Dose-Response relationships from combustion aerosols in ALI exposed human lung cells •

Combustion of nanocomposites emits high numbers of ultrafine particles

Tube burner

- Laminar premixed Ethylene / Air flame **
- Stoichiometry: 0.8 < I < 1.2•
- Adiabatic flame temperature: ~ 2100 °C **
- Addition of suspensions or dusts possible Nano metal oxides

2,0

0,5

TiO₂ NP

Diffusional dose

[ng/cm²]

PE +

CNT

- ground nano-enabled thermoplastics
- carbon fibres
- Sampling at different heights above the ** burner
- Adaption of a dilution stage allows the ** installation of various measurement systems

Combustion aerosols of nano-enabled thermoplastics induce DNA strand breaks in A549 cells

	Carbon	PE	505 ± 8	54 ± 1	268 ± 4
100 nm	10th stage $\rightarrow d_{-} = 2.39 \mu m$	TiO ₂	137 ± 20	15 ± 2	73 ± 11
		CuO	256 ± 151	27 ± 16	136 ± 80
	2µm - Sensil A = 52 EHT = 100 W Det 29 Ju 2018 Areture Size = 30.00 µm	CNT (+ gum arabicum)	44 ± 7	5 ± 1	23 ± 4
	PE + TiO ₂	527 ± 317	56 ± 34	280 ± 168	
	PE + CuO	235 ± 18	25 ± 2	125 ± 10	
\leftarrow	2 µm Signal A = SE2 EHT = 4.00 kV Date 28.Jul 2016 Aperture Size = 30.00 µm Mag = 10.00 KX WD = 7.4 mm churcher + 226-503 % File Name = 10_PE 10% TiO2_05 tr/	PE + CNTs	106 ± 16	11 ± 2	54 ± 8

References

Baumann et al., Energy Procedia 120 (2017), 705 Dilger et al., Archives of Toxicology 90 (2016), 3029 Mülhopt et al., Journal of Aerosol Science 96 (2016), 38 Paur et al., J. Phys.: Conf. Ser. 838 (2017), 12012

Abbreviations	NP: nanoparticles		
CNT: carbon nanotubes	PE: polyethylene		
DNA: deoxyribonucleic acid	SMPS: scanning mobility particle si		
ELPI: electrostatic low pressure impactor	TEM: transmission electron micros		

Human 3D lung tissue *MucilAir*[™]

PE

**DNA strand breaks detected using Alkaline unwinding

+: with high voltage; F: upstream filter

PE + TiO₂ NP

Electrostatic enhanced

dose

[ng/cm²]

Federal Ministry of Education and Research

SPONSORED BY THE

Grant No. 03XP0009