18 research outputs found

    Fractal analysis of scatter imaging signatures to distinguish breast pathologies

    Get PDF
    Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object’s complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.This work has been supported by CYCIT projects DA2TOI (FIS2010-19860) and TFS (TEC2010-20224-C02-02), as well as FPU PhD Scholarship (FPU12/04130), all funded by the Spanish Government

    Linear classifier and textural analysis of optical scattering images for tumor classification during breast cancer extraction

    Get PDF
    Texture analysis of light scattering in tissue is proposed to obtain diagnostic information from breast cancer specimens. Light scattering measurements are minimally invasive, and allow the estimation of tissue morphology to guide the surgeon in resection surgeries. The usability of scatter signatures acquired with a micro-sampling reflectance spectral imaging system was improved utilizing an empirical approximation to the Mie theory to estimate the scattering power on a per-pixel basis. Co-occurrence analysis is then applied to the scattering power images to extract the textural features. A statistical analysis of the features demonstrated the suitability of the autocorrelation for the classification of notmalignant (normal epithelia and stroma, benign epithelia and stroma, inflammation), malignant (DCIS, IDC, ILC) and adipose tissue, since it reveals morphological information of tissue. Non-malignant tissue shows higher autocorrelation values while adipose tissue presents a very low autocorrelation on its scatter texture, being malignant the middle ground. Consequently, a fast linear classifier based on the consideration of just one straightforward feature is enough for providing relevant diagnostic information. A leave-one-out validation of the linear classifier on 29 samples with 48 regions of interest showed classification accuracies of 98.74% on adipose tissue, 82.67% on non-malignant tissue and 72.37% on malignant tissue, in comparison with the biopsy H and E gold standard. This demonstrates that autocorrelation analysis of scatter signatures is a very computationally efficient and automated approach to provide pathological information in real-time to guide surgeon during tissue resection.This work has been supported by CYCIT projects DA2TOI (FIS2010-19860) and TFS (TEC2010-20224-C02-02), as well as FPU PhD Scholarship (FPU12/04130) funded by the Spanish Government

    TRPA1- FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p

    Get PDF
    YesRecent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD) where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein-protein interactions mediated via its C-terminal proline rich motif. Here, we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2 hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p.Faculty of Biological Sciences at the University of Leeds, Wellcome Trust Seed Award, Royal Society Research Grant RG150100, MR/K021303/1, Swedish Research Council (2014-3801) and the Medical Faculty at Lund University

    Blind breast tissue diagnosis using independent component analysis of localized backscattering response

    No full text
    A blind separation technique based on Independent Component Analysis (ICA) is proposed for breast tumor delineation and pathologic diagnosis. Tissue morphology is determined by fitting local measures of tissue reflectance to a Mie theory approximation, parameterizing the scattering power, scattering amplitude and average scattering irradiance. ICA is applied on the scattering parameters by spatial analysis using the Fast ICA method to extract more determinant features for an accurate diagnostic. Neither training, nor comparisons with reference parameters are required. Tissue diagnosis is provided directly following ICA application to the scattering parameter images. Surgically resected breast tissues were imaged and identified by a pathologist. Three different tissue pathologies were identified in 29 samples and classified as not-malignant, malignant and adipose. Scatter plot analysis of both ICA results and optical parameters where obtained. ICA subtle ameliorates those cases where optical parameter's scatter plots were not linearly separable. Furthermore, observing the mixing matrix of the ICA, it can be decided when the optical parameters themselves are diagnostically powerful. Moreover, contrast maps provided by ICA correlate with the pathologic diagnosis. The time response of the diagnostic strategy is therefore enhanced comparing with complex classifiers, enabling near real-time assessment of pathology during breast-conserving surgery.This work has been supported by CYCIT projects DA2TOI (FIS2010-19860) and TFS (TEC2010-20224-C02-02), funded by the Spanish Government

    Enhancing the one health initiative by using whole genome sequencing to monitor antimicrobial resistance of animal pathogens: Vet-LIRN collaborative project with veterinary diagnostic laboratories in United States and Canada

    No full text
    BACKGROUND: Antimicrobial resistance (AMR) of bacterial pathogens is an emerging public health threat. This threat extends to pets as it also compromises our ability to treat their infections. Surveillance programs in the United States have traditionally focused on collecting data from food animals, foods, and people. The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), a national network of 45 veterinary diagnostic laboratories, tested the antimicrobial susceptibility of clinically relevant bacterial isolates from animals, with companion animal species represented for the first time in a monitoring program. During 2017, we systematically collected and tested 1968 isolates. To identify genetic determinants associated with AMR and the potential genetic relatedness of animal and human strains, whole genome sequencing (WGS) was performed on 192 isolates: 69 Salmonella enterica (all animal sources), 63 Escherichia coli (dogs), and 60 Staphylococcus pseudintermedius (dogs). RESULTS: We found that most Salmonella isolates (46/69, 67%) had no known resistance genes. Several isolates from both food and companion animals, however, showed genetic relatedness to isolates from humans. For pathogenic E. coli, no resistance genes were identified in 60% (38/63) of the isolates. Diverse resistance patterns were observed, and one of the isolates had predicted resistance to fluoroquinolones and cephalosporins, important antibiotics in human and veterinary medicine. For S. pseudintermedius, we observed a bimodal distribution of resistance genes, with some isolates having a diverse array of resistance mechanisms, including the mecA gene (19/60, 32%). CONCLUSION: The findings from this study highlight the critical importance of veterinary diagnostic laboratory data as part of any national antimicrobial resistance surveillance program. The finding of some highly resistant bacteria from companion animals, and the observation of isolates related to those isolated from humans demonstrates the public health significance of incorporating companion animal data into surveillance systems. Vet-LIRN will continue to build the infrastructure to collect the data necessary to perform surveillance of resistant bacteria as part of fulfilling its mission to advance human and animal health. A One Health approach to AMR surveillance programs is crucial and must include data from humans, animals, and environmental sources to be effective
    corecore