10 research outputs found

    Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55

    Get PDF
    Background: Marijuana extracts (cannabinoids) have been used for several millennia for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply studied and classified. Thus, therapeutic actions, side effects and pharmacological targets for cannabinoids have been explained based on the pharmacology of cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and sometimes contradictory results suggests the existence of other cannabinoid receptors. Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed as putative cannabinoid receptors. According to their expression, GPR18 and GPR55 could be involved in sensory transmission and pain integration.Methods: This article reviews select relevant information about the potential role of GPR18 and GPR55 in the pathophysiology of pain.Results: This work summarized novel data supporting that, besides cannabinoid CB1 and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment.Conclusion: There is evidence to support an antinociceptive role for GPR18 and GPR55

    The MNK - eIF4E signaling axis contributes to injury-induced nociceptive plasticity and the development of chronic pain

    Get PDF
    Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4E(S209A)). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF-and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2(-/-) mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2 (-/-) mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.National Institutes of Health [R01-NS-065926, R01-GM-102575, R01-NS-073664]; University of Texas STARS program; postdoctoral Consejo Nacional de Ciencia y Tecnologia fellowship program [274414]6 month embargo; published: 2 August 2017.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The &agr;5 subunit containing GABAA receptors contribute to chronic pain

    No full text
    It has been recently proposed that α5-subunit containing GABAA receptors (α5-GABAA receptors) that mediate tonic inhibition might be involved in pain. The purpose of this study was to investigate the contribution of α5-GABAA receptors in the loss of GABAergic inhibition and in formalin-induced, complete Freund's adjuvant (CFA)-induced and L5 and L6 spinal nerve ligation-induced long-lasting hypersensitivity. Formalin or CFA injection and L5 and L6 spinal nerve ligation produced long-lasting allodynia and hyperalgesia. Moreover, formalin injection impaired the rate-dependent depression of the Hofmann reflex. Peripheral and intrathecal pretreatment or post-treatment with the α5-GABAA receptor antagonist, L-655,708 (0.15-15 nmol), prevented and reversed, respectively, these long-lasting behaviors. Formalin injection increased α5-GABAA receptor mRNA expression in the spinal cord and dorsal root ganglia (DRG) mainly at 3 days. The α5-GABAA receptors were localized in the dorsal spinal cord and DRG colabeling with NeuN, CGRP, and IB4 which suggests their presence in peptidergic and nonpeptidergic neurons. These receptors were found mainly in small and medium sized neurons. Formalin injection enhanced α5-GABAA receptor fluorescence intensity in spinal cord and DRG at 3 and 6 days. Intrathecal administration of L-655,708 (15 nmol) prevented and reversed formalin-induced impairment of rate-dependent depression. These results suggest that α5-GABAA receptors play a role in the loss of GABAergic inhibition and contribute to long-lasting secondary allodynia and hyperalgesia

    Possible involvement of peripheral TRP channels in the hydrogen sulfide-induced hyperalgesia in diabetic rats

    No full text
    Abstract Background Peripheral diabetic neuropathy can be painful and its symptoms include hyperalgesia, allodynia and spontaneous pain. Hydrogen sulfide (H2S) is involved in diabetes-induced hyperalgesia and allodynia. However, the molecular target through which H2S induces hyperalgesia in diabetic animals is unclear. The aim of this study was to determine the possible involvement of transient receptor potential (TRP) channels in H2S-induced hyperalgesia in diabetic rats. Results Streptozotocin (STZ) injection produced hyperglycemia in rats. Intraplantar injection of NaHS (an exogenous donor of H2S, 3–100 µg/paw) induced hyperalgesia, in a time-dependent manner, in formalin-treated diabetic rats. NaHS-induced hyperalgesia was partially prevented by local intraplantar injection of capsazepine (0.3–3 µg/paw), HC-030031 (100–316 µg/paw) and SKF-96365 (10–30 µg/paw) blockers, at 21 days post-STZ injection. At the doses used, these blockers did not modify formalin-induced nociception. Moreover, capsazepine (0.3–30 µg/paw), HC-030031 (100–1000 µg/paw) and SKF-96365 (10–100 µg/paw) reduced formalin-induced nociception in diabetic rats. Contralateral injection of the highest doses used did not modify formalin-induced flinching behavior. Hyperglycemia, at 21 days, also increased protein expression of cystathionine-β-synthase enzyme (CBS) and TRPC6, but not TRPA1 nor TRPV1, channels in dorsal root ganglia (DRG). Repeated injection of NaHS enhanced CBS and TRPC6 expression, but hydroxylamine (HA) prevented the STZ-induced increase of CBS protein. In addition, daily administration of SKF-96365 diminished TRPC6 protein expression, whereas NaHS partially prevented the decrease of SKF-96365-induced TRPC6 expression. Concordantly, daily intraplantar injection of NaHS enhanced, and HA prevented STZ-induced intraepidermal fiber loss, respectively. CBS was expressed in small- and medium-sized cells of DRG and co-localized with TRPV1, TRPA1 and TRPC6 in IB4-positive neurons. Conclusions Our data suggest that H2S leads to hyperalgesia in diabetic rats through activation of TRPV1, TRPA1 and TRPC channels and, subsequent intraepidermal fibers loss. CBS enzyme inhibitors or TRP-channel blockers could be useful for treatment of painful diabetic neuropathy

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data
    corecore