51 research outputs found

    Pitfall of hepatitis B surface antigen testing in a kidney transplant recipient presenting hepatitis B reactivation

    Get PDF
    Summary Diagnosis of hepatitis B virus (HBV) infection based on hepatitis B surface antigen (HBsAg) detection can be hampered in the setting of HBV reactivation in immunocompromized patients with prior serology indicating past cured infection, and can be associated with severe or fulminant and fatal hepatitis. We present a case of HBV reactivation in a renal transplant patient in whom HBsAg failed to be confirmed as a true positive result. One year after transplantation, systematic testing showed HBsAg positivity with a titer at 244 pg/mL, anti-hepatitis B core antibody and concurrent anti-hepatitis B surface antibody positivity. Confirmation of HBsAg detection by seroneutralization did not confirm HBsAg positivity, indicating that HBsAg detection was a false positive result. Notwithstanding, HBV DNA titer in serum was concurrently 8.6 Log IU/mL. HBV DNA sequencing showed a genotype D and several amino acid substitutions within HBsAg, including some previously involved in impaired diagnosis and altered immunogenicity. Although no perturbation of liver biochemical markers was observed, treatment with tenofovir was introduced. One month later, HBV DNA level had decreased by 2.6 Log IU/mL and no clinical and biochemical symptoms of hepatitis had occurred. The present case underlines that serologic diagnosis of HBV reactivation can be tricky in transplant recipients with a prior serology indicating past HBV infection. This prompts to perform HBV DNA testing in case of positive HBsAg testing, regardless of the result of neutralization by anti-HBs antibodies

    Hereditary and somatic etiologies of pituitary adenomas : study of the Men1 gene and the Gnas locus

    No full text
    La Néoplasie Endocrinienne Multiple de type 1 (NEM1) est une maladie génétique qui associe hyperparathyroïdie primaire, tumeurs neuroendocrines digestives et adénomes hypophysaires. Elle est due à des mutations non récurrentes du gène MEN1, parfois difficile à classer. Nous avons rassemblé et analysé les données cliniques et génétiques de 1676 patients français porteurs d’une variation de MEN1 des 4 laboratoires experts du groupe TENGEN. De ce travail, nous avons alimenté une base de données de variants (UMD MEN1) et établir le profil mutationnel de MEN1 en France. Dans une seconde partie, nous avons établi des recommandations pour la classification des variants faux sens de MEN1 en adaptant les Guidelines de l’ACMG-AMP (American College of Medical Genetics).Le Syndrome de McCune-Albright (SMA) est du à des mutations postzygotiques activatrices récurrentes du gène GNAS, responsables d’un mosaïcisme somatique, souvent indétectables dans le sang. En utilisant une technique de PCR quantitative ultrasensible, le taux de détection des mutations R201C et R201H est de 50% dans le sang de 16 patients présentant 1 à 3 lésions majeures du SMA. Pour la 1ere fois, nous avons retrouvé ces mutations dans l’ADN circulant de 3/4 patients testés.Ces mutations sont retrouvées aussi dans 30 à 40% des adénomes somatotropes. Le locus GNAS est soumis à empreinte parentale, responsable d’une expression mono-allélique de GNAS dans certains tissus comme l’hypophyse. Dans une série de 57 adénomes somatotropes nous avons montré une perturbation de l’empreinte de GNAS, associée à une relâche de l’empreinte mais n’entraînait pas d’augmentation de l’expression du gène GNAS.The Multiple Endocrine Neoplasia 1 (MEN1) is due to MEN1 mutations and characterized by a broad spectrum of lesions including hyperparathyroidism, pituitary adenomas and neuroendocrine tumors. Missense variants are frequent and could lead wrong interpretation. We collected and analyzed all the 370 variants of 1676 patients sequenced for ten years by the TENGEN network (French oncogenetics of neuroendocrine tumors). We registered them in the UMD MEN1 database. Then, consensus was reached to validate adjustments to the ACMG-AMP guidelines for MEN1 locus-specific interpretation of missense variants. The McCune-Albright syndrome (MAS) is a rare pediatric mosaic genetic disorder. MAS results from recurrent post-zygotic GNAS mutations, not detectable in blood DNA by Sanger. We develop an ultrasensitive quantitative PCR using digital droplet PCR™ (ddPCR™) in order to target the R201C and R201H GNAS mutations. After a validation study, we clinically evaluated ddPCR™ in the whole blood DNA or circulating cell-free DNA (ccfDNA) of patients presented with at least 1 MAS lesion. First we detected in ccfDNA the mosaic somatic GNAS mutant. The ddPCR™ showed a mutation detection rate of 50% in blood DNA of the 16 included patients and 3/4 in ccfDNA.GNAS mutations are also reported in 30 to 40% of somatotroph tumors. GNAS is encoded by an imprinted locus, responsible for a mono-allelic expression in pituitary. We explored the GNAS locus methylation status of 57 somatotroph adenomas and showed disturbance. We studied the impact on GNAS, SST2R and AIP expression of this disturbance. We showed an imprinting relaxation not associated with an increased expression of GNAS

    Somatotroph Tumors and the Epigenetic Status of the GNAS Locus

    No full text
    Forty percent of somatotroph tumors harbor recurrent activating GNAS mutations, historically called the gsp oncogene. In gsp-negative somatotroph tumors, GNAS expression itself is highly variable; those with GNAS overexpression most resemble phenotypically those carrying the gsp oncogene. GNAS is monoallelically expressed in the normal pituitary due to methylation-based imprinting. We hypothesize that changes in GNAS imprinting of gsp-negative tumors affect GNAS expression levels and tumorigenesis. We characterized the GNAS locus in two independent somatotroph tumor cohorts: one of 23 tumors previously published (PMID: 31883967) and classified by pan-genomic analysis, and a second with 82 tumors. Multi-omics analysis of the first cohort identified a significant difference between gsp-negative and gsp-positive tumors in the methylation index at the known differentially methylated region (DMR) of the GNAS A/B transcript promoter, which was confirmed in the larger series of 82 tumors. GNAS allelic expression was analyzed using a polymorphic Fok1 cleavage site in 32 heterozygous gsp-negative tumors. GNAS expression was significantly reduced in the 14 tumors with relaxed GNAS imprinting and biallelic expression, compared to 18 tumors with monoallelic expression. Tumors with relaxed GNAS imprinting showed significantly lower SSTR2 and AIP expression levels. Altered A/B DMR methylation was found exclusively in gsp-negative somatotroph tumors. 43% of gsp-negative tumors showed GNAS imprinting relaxation, which correlated with lower GNAS, SSTR2 and AIP expression, indicating lower sensitivity to somatostatin analogues and potentially aggressive behavior

    Molecular Basis and Natural History of Medullary Thyroid Cancer: It is (Almost) All in the RET

    No full text
    Medullary thyroid carcinoma (MTC) is a rare neoplasm supported by a strong genetic determinism. This review summarizes the genetic landscape of MTC at both germline and somatic levels to understand the molecular basis and the natural history of the tumour, mainly but not exclusively, linked to RET proto-oncogene genetic abnormalities. RET is a tyrosine kinase receptor that represents a therapeutic target with encouraging results. However, some RET genetic variations could lead to treatment resistance

    BOUCHER_supplemental table 2_ Classification of MEN1 variants according to the ACMG-AMP guidelines

    No full text
    supplemental table 2_ Classification of MEN1 variants according to the ACMG-AMP guidelines</p

    Case report of GNAS epigenetic defect revealed by a congenital hypothyroidism.

    No full text
    International audiencePseudohypoparathyroidism (PHP) is a group of disorders characterized by end-organ resistance to the parathyroid hormone (PTH). PHP type 1A includes multihormone resistance syndrome, Albright's hereditary osteodystrophy, and obesity and is caused by mutations in GNAS exon 1 through 13. PHP type 1B (PHP1B), caused by epigenetic changes in the GNAS locus, was initially described as an isolated resistance to PTH. Epigenetic changes in GNAS have also been reported in patients who display mild Albright's hereditary osteodystrophy or mild thyroid-stimulating hormone (TSH) resistance without mutation of GNAS. Here we report a case of PHP caused by epigenetic changes in GNAS in a patient with congenital hypothyroidism. The patient was referred for a positive newborn screening for hypothyroidism (TSH 50 mIU/L). She exhibited severe clinical features of congenital hypothyroidism. The thyroid was in place, and etiologic explorations were negative. TSH was normalized under L-thyroxin, and the symptoms disappeared, except for a macroglossia. In childhood, PHP was suspected in addition to elevated PTH, obesity, brachydactyly, and a rounded face. Sequencing, methylation analysis, and large deletion research were performed in GNAS. No genetic mutations were found. Methylation analysis revealed a broad epigenetic defect without deletion in GNAS consistent with sporadic PHP1B. The multilocus methylation analysis were negative. This finding expands the known onsets of PHP1B and emphasizes the need for a new PHP classification system. This case report has important consequences for the etiologic diagnosis of congenital hypothyroidism because it adds a new cause of the disease
    • …
    corecore