223 research outputs found

    Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T

    Get PDF
    Background: Arsenic (As) is a natural metalloid, widely used in anthropogenic activities, that can exist in different oxidation states. Throughout the world, there are several environments contaminated with high amounts of arsenic where many organisms can survive. The most stable arsenical species are arsenate and arsenite that can be subject to chemically and microbiologically oxidation, reduction and methylation reactions. Organisms surviving in arsenic contaminated environments can have a diversity of mechanisms to resist to the harmful effects of arsenical compounds. Results: The highly metal resistant Ochrobactrum tritici SCII24 was able to grow in media with arsenite (50 mM), arsenate (up to 200 mM) and antimonite (10 mM). This strain contains two arsenic and antimony resistance operons (ars1 and ars2), which were cloned and sequenced. Sequence analysis indicated that ars1 operon contains five genes encoding the following proteins: ArsR, ArsD, ArsA, CBS-domain-containing protein and ArsB. The ars2 operon is composed of six genes that encode two other ArsR, two ArsC (belonging to different families of arsenate reductases), one ACR3 and one ArsH-like protein. The involvement of ars operons in arsenic resistance was confirmed by cloning both of them in an Escherichia coli ars-mutant. The ars1 operon conferred resistance to arsenite and antimonite on E. coli cells, whereas the ars2 operon was also responsible for resistance to arsenite and arsenate. Although arsH was not required for arsenate resistance, this gene seems to be important to confer high levels of arsenite resistance. None of ars1 genes were detected in the other type strains of genus Ochrobactrum, but sequences homologous with ars2 operon were identified in some strains. Conclusion: A new strategy for bacterial arsenic resistance is described in this work. Two operons involved in arsenic resistance, one giving resistance to arsenite and antimonite and the other giving resistance to arsenate were found in the same bacterial strain

    Thin Films for Medical and Environmental Applications

    Get PDF
    A material that presents both the appropriate set of bulk properties in conjunction with an optimal surface performance is hardly found. For this reason, there is the need of modifying its surface. This is a standard procedure in many application fields but particularly important in the medical and environmental research. In this chapter, we describe the use of sputtering, as the chosen technology for the deposition of thin films. The use of the modified surfaces in the medical and environmental fields will be highlighted by two case studies in each one. In biomedicine, the surface modification of medical invasive devices for orthopedic and neural applications will be presented. For the environmental aspect, the results of two bioremediation tools, for arsenic and uranium removal, based on the immobilization of bacterial cells will be discussed

    Tailings microbial community profile and prediction of its functionality in basins of tungsten mine

    Get PDF
    In a circular economy concept, where more than 300 million tons of mining and quarrying wastes are produced annually, those are valuable resources, supplying metals that are extracted today by other processes, if innovative methods and processes for efficient extraction of these elements are applied. This work aims to assess microbiological and chemical spatial distribution within two tailing basins from a tungsten mine, using a MiSeq approach targeting the 16S rRNA gene, to relate microbial composition and function with chemical variability, thus, providing information to enhance the efficiency of the exploitation of these secondary sources. The tailings sediments core microbiome comprised members of family Anaerolineacea and genera Acinetobacter, Bacillus, Cellulomonas, Pseudomonas, Streptococcus and Rothia, despite marked differences in tailings physicochemical properties. The higher contents of Al and K shaped the community of Basin 1, while As-S-Fe contents were correlated with the microbiome composition of Basin 2. The predicted metabolic functions of the microbiome were rich in genes related to metabolism pathways and environmental information processing pathways. An in-depth understanding of the tailings microbiome and its metabolic capabilities can provide a direction for the management of tailings disposal sites and maximize their potential as secondary resources

    A proactive approach to the conservation of historic and cultural Heritage: The HeritageCare methodology

    Get PDF
    Presently, no systematic policy for the preventive conservation of the built cultural heritage exists in South-West Europe. Current approaches for inspection, diagnosis, monitoring and reactive conservation are normally intermittent, unplanned, expensive and lack methodical strategy. The available financial resources are scarce and are mostly addressed to listed buildings. Besides, owners and stakeholders often reveal reluctance to invest in preventive conservation and maintenance programs. In view of these considerations, and driven by the principle “prevention is better than cure”, the HeritageCare project has developed a system for the preventive conservation and maintenance of the built heritage. The main aim of this paper is to briefly describe the methodology, including its three levels of service, and present the main results of the implementation and validation of the service level 1 on a case study belonging to the Portuguese architectural heritage.This work was carried out within the scope of the project HeritageCare (SOE1/P5/P0258), co-funded by the Interreg-Sudoe/FEDER program and included in the research activities of the ISISE Research Centre, also financed by FEDER funds through the Competitiveness Factors Operational Program – COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007633. Authors would like to express their gratitude to the Centre for Computer Graphics, HeritageCare partner, for the development of the platform (and supporting database) and the mobile application, outputs of the project HeritageCare. Authors would like to express their gratitude to the Santa Maria de la Real Foundation, HeritageCare partner, for the placement of the monitoring system at the Ducal Palace, Guimarães, Portugal

    A multivalent chimeric vaccine composed of Schistosoma mansoni SmTSP-2 and Sm29 was able to induce protection against infection in mice

    Get PDF
    Schistosoma mansoni is a blood fluke parasite responsible for schistosomiasis. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. In this study, we cloned, expressed and purified SmTSP-2 fused to the N- and C-terminal halves of Sm29 and tested these chimeras as vaccine candidates using an adjuvant approved to be used in humans. The results demonstrated that vaccination with SmTSP-2 fused to N- or C-terminus of Sm29-induced reduction in worm burden and liver pathology when compared to control animals. Additionally, we detected high levels of mouse-specific IgG, IgG1 and IgG2a against both chimeras and significant amounts of IFN-γ and TNF-α and no IL-4. Finally, studies with sera from patients resistant to infection and living in schistosomiasis endemic areas revealed high levels of specific IgG to both chimeras when compared to healthy individuals. In conclusion, SmTSP-2/Sm29 chimeras tested here induced partial protection against infection and might be a potential vaccine candidate

    Enduring Behavioral Effects Induced by Birth by Caesarean Section in the Mouse

    Get PDF
    Birth by Caesarean (C)-section impacts early gut microbiota colonization and is associated with an increased risk of developing immune and metabolic disorders. Moreover, alterations of the microbiome have been shown to affect neurodevelopmental trajectories. However, the long-term effects of C-section on neurobehavioral processes remain unknown. Here, we demonstrated that birth by C-section results in marked but transient changes in microbiome composition in the mouse, in particular, the abundance of Bifidobacterium spp. was depleted in early life. Mice born by C-section had enduring social, cognitive, and anxiety deficits in early life and adulthood. Interestingly, we found that these specific behavioral alterations induced by the mode of birth were also partially corrected by co-housing with vaginally born mice. Finally, we showed that supplementation from birth with a Bifidobacterium breve strain, or with a dietary prebiotic mixture that stimulates the growth of bifidobacteria, reverses selective behavioral alterations in C-section mice. Taken together, our data link the gut microbiota to behavioral alterations in C-section-born mice and suggest the possibility of developing adjunctive microbiota-targeted therapies that may help to avert long-term negative consequences on behavior associated with C-section birth mode
    • …
    corecore