

International Journal of Systematic and Evolutionary Microbiology Metahyphopichia laotica gen. nov., sp. nov., a novel polymorphic yeast related to Hyphopichia --Manuscript Draft--

Manuscript Number:	IJS-D-15-00111R4
Full Title:	Metahyphopichia laotica gen. nov., sp. nov., a novel polymorphic yeast related to Hyphopichia
Short Title:	Metahyphopichia gen. nov.
Article Type:	Note
Section/Category:	New taxa - Eukaryotic micro-organisms
Keywords:	dimorphic yeast; pseudohypha; blastoconidia; flower; bark
Corresponding Author:	Matthias Sipiczki Department of Genetics and Applied Microbiology, University of Debrecen Debrecen, HUNGARY
First Author:	Matthias Sipiczki
Order of Authors:	Matthias Sipiczki
	Walter P. Pfliegler, PhD
	Silvana V. B. Safar, PhD
	Paula B Morais, PhD
	Carlos A. Rosa, PhD
Manuscript Region of Origin:	HUNGARY
Abstract:	Four strains alternating between yeast and filamentous growth morphologies were isolated from flowers in two regions of Laos. In liquid environment the isolates propagated by budding and developed irregularly shaped pseudohyphae. On solid media their yeast cells switched to hyphal growth which could return to the yeast phase by developing lateral blastoconidia. The sequences of the D1/D2 domains of the large subunit (LSU) 26S rRNA genes, the internal transcribed spacer (ITS) regions and the small subunit (SSU) 18S rRNA genes were identical in the four strains and differed from the corresponding sequences of other yeast species available in databases by at least 11% (D1/D2), 13% (ITS) and 7% (SSU). In an independent project, two strains with D1/D2 and ITS sequences very similar to those of the Laotian strains were found in bark samples collected in Brazil. The six strains also differed from the closest yeast species in physiological properties, indicating that they represented a hitherto undescribed species. The phylogenetic analysis of the D1/D2 sequences, and the concatenated sequences of the SSU rRNA genes, D1/D2 domains of LSU rRNA genes as well as the protein-encoding genes ACT1 and TEF1 placed them close to Hyphopichia. To reflect this position, the novel genus name Metahyphopichia and the novel species name Metahyphopichia laotica are proposed for them. The type strain is 11-1006T (=CBS 13022T = CCY 092-001-001T = NCAIM Y.02126T) isolated in Luang Prabang (Laos). Mycobank registration numbers are MB 808253 (Metahyphopichia) and MB 808254 (M. laotica).

1 2 Metahyphopichia laotica gen. nov., sp. nov., a novel polymorphic 3 yeast related to Hyphopichia 4 5 Matthias Sipiczki¹, Walter P. Pfliegler¹, Silvana V. B. Safar², Paula B. Morais³, Carlos A. 6 7 Rosa² 8 9 ¹Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, 10 Hungary 11 ²Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, 12 Belo Horizonte, MG 31270-901, Brazil 13 ³Laboratorio de Microbiologia Ambiental e Biotecnologia, Universidade Federal do 14 Tocantins, Palmas, TO 77020-220, Brazil 15 16 Running title: Metahyphopichia gen. nov. 17 **Contents category:** Eukaryotic Microorganisms 18 Correspondence: Matthias Sipiczki gecela@post.sk 19 20 21 (Footnote) 22 The GenBank/EMBL/DDBJ accession numbers for the D1/D2 domain of the LSU rRNA gene, the ITS1-5.8S-ITS2 region and the 18S SSU rRNA gene of 11-1006^T are JX515975, 23 24 JX515976 and JX515977, respectively. 25

26	(Abstract)
27	Four strains alternating between yeast and filamentous growth morphologies were isolated
28	from flowers in two regions of Laos. In liquid environment the isolates propagated by
29	budding and developed irregularly shaped pseudohyphae. On solid media their yeast cells
30	switched to hyphal growth which could return to the yeast phase by developing lateral
31	blastoconidia. The sequences of the D1/D2 domains of the large subunit (LSU) 26S rRNA
32	genes, the internal transcribed spacer (ITS) regions and the small subunit (SSU) 18S rRNA
33	genes were identical in the four strains and differed from the corresponding sequences of
34	other yeast species available in databases by at least 11% (D1/D2), 13% (ITS) and 7% (SSU)
35	In an independent project, two strains with D1/D2 and ITS sequences very similar to those of
36	the Laotian strains were found in bark samples collected in Brazil. The six strains also
37	differed from the closest yeast species in physiological properties, indicating that they
38	represented a hitherto undescribed species. The phylogenetic analysis of the D1/D2
39	sequences, and the concatenated sequences of the SSU rRNA genes, D1/D2 domains of LSU
40	rRNA genes as well as the protein-encoding genes ACT1 and TEF1 placed them close to
41	Hyphopichia. To reflect this position, the novel genus name Metahyphopichia and the novel
42	species name <i>Metahyphopichia laotica</i> are proposed for them. The type strain is 11-1006 ^T
43	$(=CBS\ 13022^{T} = CCY\ 092-001-001^{T} = NCAIM\ Y.02126^{T})$ isolated in Luang Prabang (Laos)
44	Mycobank registration numbers are MB 808253 (Metahyphopichia) and MB 808254 (M.
45	laotica).

Alternation between yeast and filamentous growth phases is a widespread phenomenon in all
larger taxonomic groups of Basidiomycota and Ascomycota. The ability to switch between
growth phases helps the di- and polymorphic fungi adapt to changes in the environment. For
example species are known that propagate by producing yeast cells in liquid substrates and by
forming hyphae or pseudohyphae (or both) on/in solid substrates (e.g. Sipiczki et al., 1998).
In pathogenic species, the morphological transitions are usually associated with changes in
pathogenicity (for a review, see Nemecek et al., 2006). The signals that induce phase
transitions and the mechanisms by which the organisms reprogramme themselves are poorly
understood in most species. Detailed molecular analyses have been performed in a limited
number of species (for reviews see, Han et al., 2011; Gancedo, 2001) and revealed
considerable diversity. In a recent bioinformatics analysis (Nagy et al., 2014), we found that
the diversification of Zn-cluster transcription factors may play an important role in the yeast-
filamentous transitions. Identification and characterisation of novel species with di- or
polymorphic growth cycles could contribute to a better understanding of the phenomenon.
Motivated by these perspectives, we isolated yeasts capable of switching to filamentous
growth from plant material collected in various geographical localities. Certain isolates turned
out to represent novel species of various ascomycetous or basidiomycetous genera (e.g.
Sipiczki & Kajdacsi, 2009; Sipiczki, 2011, 2012, 2013). Here we report on another group of
strains (Table 1) capable of alternation between yeast and filamentous morphologies. The
strains represent a novel species related to Hyphopichia and Danielozyma.
To isolate yeasts capable of morphological transitions, plant material was collected in
various localities in Laos in 2008. The samples were macerated in sterile water and aliquots
were streaked on YEA (1% yeast extract, 2% glucose, 2 % agar, w/v). After incubation at 25
$^{\circ}$ C for 10 days, yeast colonies fringed with mycelia were isolated. Three samples (fallen small
flowers of uncertain origin) collected in the outskirts of the town Luang Prahang and one

sample from Vientiane (fallen Dok Champa [Plumeria alba] flower) produced colonies with
wrinkled surface and mycelium. Representatives of colonies were isolated from each sample
and restreaked on fresh YEA plates to select pure clones. The colonies of the Luang Prabang
strains were more wrinkled and occasionally segregated into sectors with smoother surface
(Fig. 1a,b). Both the more wrinkled and the smoother parts consisted of mixtures of budding
yeast cells and pseudohyphae (Fig. 1c) but the proportion of pseudohyphae was lower in the
sectors with smoother surfaces. On nutrient-poor media such as corn-meal agar (van der Walt
& Yarrow, 1984), the yeast colonies of all isolates were thinner and released rapidly growing
mycelium into the medium. Consistent with this colony morphology, all strains developed a
mesh of branched hyphae in thin YEA films sandwiched between a glass slide and a cover
slip (a modified Dalmau-plate method; Sipiczki, 2011) (Fig. 1e,f). On older parts of the
hyphae, blastoconidia were formed which then divided by budding and established satellite
yeast colonies along the hyphae (Fig. 1g). In the liquid medium YEL (YEA without agar),
budding yeasts and pseudohyphae of irregular shape and size were observed. Blastoconidia
were also formed on the pseudohyphae (Fig. 1d). Similar morphological transitions have been
observed in many other dimorphic species (Kurtzman et al., 2011).
For molecular analysis, genomic DNA was extracted from overnight cultures of three
Luang Prabang isolates and one Vientiane isolate grown in YEL broth as described previously
(Sipiczki, 2003). The purified DNA was used for the amplification of the D1/D2 domains of
the large subunit (LSU) rRNA genes of the isolates with the primers NL-1 and NL-4
(O'Donnell, 1993). The amplified DNA was purified and sequenced using the amplification
primers. The $D1/D2$ sequences of the isolates were identical. The sequences of the ITS1-5.8S-
ITS2 regions and the small subunit (SSU) rRNA genes of one isolate from Luang Prabang
(11-1006 ^T) and one isolate from Vientiane (11-516) were also determined and found identical.
The primers used for amplification and sequencing were ITS1 and ITS4 for the ITS regions

96	(White et al., 1990) and Fungi-18S-up and ITS4 for the 18S rRNA gene (Sipiczki & Kajdacsi,
97	2009). The results of the sequence comparisons indicated that the isolates were conspecific.
98	The GenBank accession number of the ITS1-5.8S-ITS2 sequence of 11-1006 ^T is JX515976,
99	the other accession numbers are listed in Table 1S.
100	The MEGABLAST similarity search with these sequences in the GenBank database
101	(http://blast.ncbi.nlm.nih.gov/Blast.cgi) found no identical sequences. The most similar
102	D1/D2 sequence was from Candida silvanorum NRRL Y-7782 (U71068): 11% nucleotide
103	difference (22 substitutions and 16 indels). Many D1/D2 sequences of taxonomically
104	uncharacterized yeasts and strains of the Danielozyma (Kurtzman & Robnett, 2014),
105	Hyphopichia (Groenewald & Smith, 2010; Limtong et al., 2012), Metschnikowia (Lachance,
106	2011) and Pichia (Kurtzman, 2011b) clades as well as the C. haemulonii species complex
107	(Cendejas-Bueno et al., 2012) showed 82-88 % identity. The most similar ITS sequences (85-
108	87 % identity) and 18S sequences (92-93 % identity) were also from species belonging to
109	these clades or from taxonomically uncharacterized strains. The significant sequence
110	differences indicated that the Laotian polymorphic isolates represented a hitherto undescribed
111	novel yeast species.
112	Recently, a D1/D2 sequence (KC206086) was deposited in the database which showed
113	99% identity with those of the Laotian strains. The very strong similarity suggested that it was
114	from a yeast most probably conspecific with the Laotian strains. This yeast (UFMG-CM-
115	Y6070) was isolated from bark of the tree Tapirira guianensis (Anacardiaceae) collected in
116	the Protected Ecological Reserve of Serra do Lajeado, in the city of Taquaruçu, state of
117	Tocantins, Brazil in October 2011, together with the strain UFMG-CM-Y6069, which had an
118	identical D1/D2 sequence. For yeast isolation, the bark samples were inoculated in tubes
119	containing 15 ml of Yeast Nitrogen Base (YNB, Difco, USA) supplemented with 1%
120	raffinose, 8% ethanol and 0.02% chloramphenicol, as described by Sampaio & Gonçalves

(2008). DNA extraction, PCR reactions and sequencing of the D1/D2 domains were done as
described by Safar et al. (2013). Both Brazilian strains produced both pseudohyphae and
mycelium. The ITS1-5.8S-ITS2 sequence (KP262069) of UFMG-CM-Y6070 differed from
that of 11-1006 ^T at 10 positions which is close to the average intraspecific variability (2.51%
with a standard deviation of 4.57) determined by Nilsson et al. (2008) for fungi but higher
than the usual variability within ascomycetous yeast species (e.g. Chen et al., 2001;
Kurtzman, 2012). To further examine the relationship of 11-1006 ^T and UFMG-CM-Y6070,
we amplified and sequenced regions of their genes coding for actin (ACTI), the RNA
polymerase II (RPB2) and the translation elongation factor 1-alpha (TEF1) using the primer
pairs CA1 and CA5R (for ACT1), RPB2-6F and fRPB2-7cR (for RPB2) and YTEF-1 and
YTEF-6A (for TEF1) with the enzyme DreamTaq (Thermo) (Kann, 1993; Kurtzman &
Robnett, 2003). The amplification parameters were: initial denaturation step at 95°C for 5
min, 30 cycles at 95°C for 50 s, 55°C for 50 s, 72°C for 70 s and a final elongation step at
72°C for 5 min. The same primers were used for sequencing the amplified fragments (see
Table 1S for GenBank accession numbers). The differences found in their blast2 alignments
(1 substitution and 1 indel for ACT1, 2 substitutions for RPB2, and 10 substitutions and 1
indel for <i>TEF1</i>) confirmed the close relationship detected between their D1/D2 domains.
Both the Laotian and the Brazilian groups of isolates were tested for physiological
properties and sporulation using standard taxonomic methods (van der Walt & Yarrow, 1984)
and found to differ in numerous traits from the type strain of <i>C. silvanorum</i> , the most closely
related species in terms of rDNA sequence similarity (Table 2). No variability was detected
among the isolates. Mating and sporulation was tested both in pure cultures and in mixed
cultures with other strains by cultivation on acetate agar, malt-extract agar and corn-meal agar
at 17 °C and 25 °C for 4 weeks. Neither mating nor sexual sporulation was observed in the
cultures

To determine the phylogenetic position of the strains of the new species, phylogenetic
analyses were carried out with the D1/D2 domain sequences of strains $11-1006^T$ (JX515975),
UFMG-CM-Y6070 (KC206086) and the type strains of species of related genera. Sequences
which did not overlap the entire variable regions of the domain (Sipiczki et al., 2013) were
not involved in the analysis. For multiple alignment of sequences, the CLUSTAL W 1.7
(Thompson et al., 1994) and the MAFT version 6 (Katoh & Toh, 2008) algorithms were used.
After the first alignment, the overhangs of the sequences that did not overlap with all other
sequences were removed and a new alignment was produced for the phylogenetic analysis.
The alignments were then analysed with Bayesian (Mr Bayes 3.2: Ronquist et al., 2012),
maximum-likelihood (PHYML 3.0: Guindon et al., 2010), neighbour-joining, and maximum
parsimony (PHYLIP version 3.67 software package: Felsenstein, 2007) methods. The
Bayesian tree was generated with the General-Time-Reversible (GTR) substitution model for
nucleotide sequences (Saccone et al., 1990) and gamma-shaped rate variation with a
proportion of invariable sites. The MCMC processes were set so that four chains were run
simultaneously for 3,000,000 generations. The average standard deviation of split frequencies
was: 0.004469, indicating a convergence. Bayesian posterior probability of the branches was
estimated from 1937 trees. In the maximum-likelihood analysis, settings were made according
to the best model suggested by the Akaike Information Criterion (AIC) in jModelTest version
2.0.2 (Posada, 2008). In the neighbour-joining analysis, the F84 model of nucleotide
substitutions (Felsenstein & Churchill, 1996) was used for computing distance matrices.
Confidence limits for this and the parsimony analysis were estimated by bootstrapping based
on 1000 replications using the SEQBOOT and CONSENCE (majority-rule) programmes of
the PHYLIP package. Trees were visualized with the TreeView (Page, 1996) and FigTree
(http://tree bio ed ac uk/) programmes

In all analyses, the Laotian and Brazilian strains shared a branch clearly separated
from the type strains of all species whose strains were identified in the database search as
having similar D1/D2 sequences, confirming that they constitute a distinct species. All
methods identified C. silvanorum as their closest relative and placed them close to the genera
Hyphopichia, Danielozyma and Metschnikowia (the PhyML tree is shown in Fig. 1S).
In all trees the joint branch of the new strains and the C. silvanorum type strain
separated from the <i>Hyphopichia</i> lineage, but the statistical support of this node was always
very weak. Hence, we conducted an analysis with more chromosomal regions of
representatives of a broader spectrum of genera. For multilocus tree inference we
concatenated D1/D2, 18S SSU (small subunit rRNA), ACT1 (coding for actin) and TEF1
(coding for translation elongation factor 1-alpha) gene sequences. As such sequences were not
available for all related type strains, we first sequenced their missing genes (Table 1S) using
the primers and methods described above and in Kurtzman and Robnett (2003). Sequence
alignment and tree inference were performed as described above. The analysis of the
concatenated sequences placed 11-1006 ^T and UFMG-CM-Y6070 near <i>Hyphopichia</i> (Fig. 2)
on a well-separated branch with strong statistical support. The 11-1006 ^T sequences differed in
Blast alignments from the corresponding sequences of the type strain (CBS 2352) of <i>H</i> .
burtonii, the type species of Hyphopichia at 35 (D1/D2), 84 (SSU rRNS), 78 (ACT1), 107
(TEF1), and 121 (RPB2) positions. Within the ITS1-5.8S-ITS2 segment, similarity (95%) was
detected only in the 5.8S gene. These results indicate that the Laotian and Brazilian strains
represent a novel species of a novel genus. To accommodate them in the taxonomic system of
yeasts, we propose the new genus name Metahyphopichia gen. nov. and the species name
Metahyphopichia laotica sp. nov. which refers to the geographical location of the site, from
where the type strain $(11-1006^{T})$ was isolated.

M. laotica is a morphologically variable yeast like its closest relative, the dimorphic
C. silvanorum originally identified in beetle infestations (van der Walt et al., 1971) and
numerous <i>Hyphopichia</i> species (Kurtzman, 2011a; Limtong et al., 2012). It can switch from
yeast morphology to filamentous morphology, and its hyphae penetrate into solid substrates
where they establish satellite yeast colonies during their extension. A similar colonizing
strategy was recently observed in a Pichia species (Sipiczki, 2013). It is likely that other
dimorphic Pichia and Hyphopichia species also make use of morphological transitions for
more effective colonization of solid and semisolid substrates.

The occurrence of *M. laotica* associated with flowers and tree barks suggests that these substrates could be its ecological niche. Probably, insects that visit these substrates are the vectors of this new yeast species. Several recently described yeast species, such as *C. golubevii, Moniliella fonsecae, Saccharomycopsis fodiens* and *Kodamaea transpacifica*, are reported to occur in South America and Asia (Rosa et al., 2009, 2010; Lachance et al., 2012; Freitas et al., 2013). Freitas et al. (2013) suggesting that the dispersion of some of these species may be linked to the activity of ancient human populations. The occurrence of *M. laotica* in Asia and South America could also be linked to the dispersion of plants with their indigenous microbiota by these ancient populations, however, this hypothesis needs further studies to be proven.

Description of Metahyphopichia Sipiczki & Pfliegler gen. nov.

Metahyphopichia (Me.ta.hy.pho.pi'chi.a. Gr. prep. meta, close by; N.L. fem. n. *Hyphopichia* a fungal genus; N.L. fem. n. *Metahyphopichia*, indicating that this genus occurs on the phylogenetic trees adjacent to the *Hyphopichia* clade).

The genus is phylogenetically related to the genera <i>Hyphopichia</i> and <i>Danielozyma</i> . Colonies
are polymorphic with initial yeast growth. Yeast cells divide by multilateral budding. Among
the yeast cells, pseudohyphae of irregular shape are frequently formed which produce lateral
and terminal blastoconidia. Invasive, branching septate hyphae are developed below the yeast
colonies. The hyphae can produce lateral blastoconidia that establish satellite yeast colonies.
The type species is <i>Metahyphopichia laotica</i> Sipiczki, Pfliegler, Safar, Morais & Rosa
Description of <i>Metahyphopichia laotica</i> Sipiczki, Pfliegler, Safar, Morais &
Rosa sp. nov.
Metahyphopichia laotica (la.o'ti.ca N.L. nom.fem. adj. laotica pertaining to Laos from where
the type strain was isolated).
In the liquid medium YEL, after 2 days of incubation at 25°C, cells are round to long oval, 1-
3×1.5 - $4.5 \mu m$, occur singly or in pairs and propagate by budding (Fig. 1c). Surface ring and
sparse sediment are present. On YEA, after 1 month at 25 °C, the colonies are white to cream
coloured, with venose to wrinkled surface and eroded margin but also with smoother sectors
(Fig. 1a,b). Pseudohyphae consisting of irregularly elongated and curved cells are produced
both in liquid and on solid media (Fig. 1c,d). Invasive mycelium is formed in the solid
medium under and around the yeast colonies. In thin films of YEA sandwiched between glass
slides (modified Dalmou plates), elaborate branching mycelium (Fig. 1e,f) of septate hyphae
and pseudohyphae is formed. Ovoid to elongate (2-3 x 3-6 μm) blastoconidia develop on the
hyphae. The blastoconidia propagate by budding and establish yeast colonies along the
extending hypha (Fig. 1g). No ascospores are produced on YEA, acetate agar, malt-extract

243	agar or corn-meal agar (for the description of media, see van der Walt & Yarrow, 1984) after
244	4 weeks of incubation at 17 $^{\circ}\text{C}$ and 25 $^{\circ}\text{C}$. For description of the biochemical and
245	physiological characteristics, see Table 2. M. laotica differs from the most closely related
246	species in numerous properties which allow their differentiation by conventional taxonomic
247	tests.
248	
249	The type strain is 11-1006 ^T , isolated from fallen flower in Luang Prabang, Laos. It has been
250	deposited in the culture collection of the Centraalbureau voor Schimmelcultures, Utrecht, The
251	Netherlands, as CBS 13022^{T} (= CCY $092-001-001^{T}$ = NCAIM Y.02126 ^T).
252	
253	Acknowledgements
254	
255	This work was supported by the grants K081792 and K106172 provided by the Hungarian
256	National Office for Research and Technology (OTKA). It was also funded by the Conselho
257	Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq – Brazil, process numbers
258	552877/2007-7, 307015/2013-0 and 457499/2014-1), Fundação do Amparo a Pesquisa do
259	Estado de Minas Gerais (FAPEMIG, process number APQ-02163-11 and APQ-01525-14),
260	the Financiadora de Estudos e Projetos (FINEP, process number 2084/07). M. S. ad W. P.
261	Pfliegler are grateful to Anita Olah-Csabai for expert technical assistance.
262	
263	References
264	
265	Cendejas-Bueno, E., Kolecka, A., Alastruey-Izquierdo, A., Theelen, B., Groenewald, M.,
266	Kostrzewa, M., Cuenca-Estrella, M., Gómez-López, A. & Boekhout T. (2012)
267	Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii

268	Group I), C. duobushaemulonii sp. nov. (C. haemulonii Group II), and C. haemulonii var.
269	vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol 50, 3641–
270	3651.
271	Chen, Y-C, Eisner, J. D., Kattar, M. M., Rassoulian-Barrett, S. L., Lafe, K., Bui, U.,
272	Limaye, A. P. & Cookson, B. (2001) Polymorphic internal transcribed spacer region 1 DNA
273	sequences identify medically important yeasts. <i>J Clin Microbiol</i> 39 , 4042–4051.
274	Felsenstein, J. (2007) PHYLIP (phylogeny inference package), version 3.67. Distributed by
275	the author. Department of Genome Sciences, University of Washington, Seattle, USA
276	Felsenstein, J. & Churchill, G. A. (1996) A Hidden Markov Model approach to variation
277	among sites in rate of evolution. <i>Mol Biol Evol</i> 13 , 93-104.
278	Freitas, L. F., Carvajal Barriga, E. J., Barahona, P. P., Lachance, MA. & Rosa, C. A.
279	(2013). Kodamaea transpacifica f.a., sp. nov., a yeast species isolated from ephemeral
280	flowers and insects in the Galapagos Islands and Malaysia: futher evidence for ancient human
281	transpacific contacts. Int J Syst Evol Microbiol 63, 4324-4329.
282	Gancedo, J. M. (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae.
283	FEMS Microbiol Rev 25, 107-123.
284	Groenewald, M. & Smith, M. T. (2010) Re-examination of strains formerly assigned to
285	Hyphopichia burtonii, the phylogeny of the genus Hyphopichia, and the description of
286	Hyphopichia pseudoburtonii sp. nov. Int J Syst Evol Microbiol 60, 2675–2680.
287	Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O.
288	(2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing
289	the performance of PhyML 3.0. System Biol 59, 307-321.
290	Han, TL., Cannon, R. D & Villas-Bôas, S. G. (2011) The metabolic basis of Candida
291	albicans morphogenesis and quorum sensing. Fungal Genet Biol 48, 747–763.

292	Kann, V. L. (1993) Polymerase chain reaction for the diagnosis of candidemia. J Infect Dis
293	168 , 779–783.
294	Katoh, K. & Toh, H. (2008) Recent developments in the MAFFT multiple sequence
295	alignment program. Brief Bioinform 9, 286-298.
296	Kurtzman, C. P. (2011a) <i>Hyphopichia</i> von Arx & van der Walt (1976). In The Yeasts: a
297	Taxonomic Study, 5th edn, vol. 1, pp. 435–438. Edited by C. P. Kurtzman, J. W. Fell & T.
298	Boekhout. Amsterdam: Elsevier.
299	Kurtzman, C. P. (2011b) Phylogeny of the ascomycetous yeasts and the renaming of <i>Pichia</i>
300	anomala to Wickerhamomyces anomalus. Antonie van Leeuwenhoek 99, 13-23.
301	Kurtzman, C. P. (2012) Citeromyces hawaiiensis sp. nov., an ascosporic yeast associated
302	with Myoporum sandwicense. Int J Syst Evol Microbiol 62, 1215–1219.
303	Kurtzman, C. P., Fell, J. W. & Boekhout, T. (2011) The yeasts: a taxonomic study.
304	Elsevier, Amsterdam.
305	Kurtzman, C. P. & Robnett, C. J. (2003) Phylogenetic relationships among yeasts of the
306	'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res 3,
307	417-432.
308	Kurtzman, C. P. & Robnett, C. J. (2014) Three new anascosporic genera of the
309	Saccharomycotina: Danielozyma gen. nov., Deakozyma gen. nov. and Middelhovenomyces
310	gen. nov. Antonie van Leeuwenhoek 105, 933–942.
311	Lachance, MA. (2011). Metschnikowia Kamienski. In The Yeasts: a Taxonomic Study, 5th
312	edn, vol. 1, pp. 575–620. Edited by C. P. Kurtzman, J. W. Fell & T. Boekhout. Amsterdam:
313	Elsevier.

314	Lachance, MA., Rosa, C. A., Carvajal, E. J., Freitas, L. F. & Bowles, J. M. (2012).
315	$Saccharomycopsis\ fodiens\ { m sp.\ nov.}, { m a}\ { m rare}\ { m predacious}\ { m yeast}\ { m from\ three}\ { m distant\ localities}.\ {\it Int\ J}$
316	Syst Evol Microbiol 62 , 2793-2798.
317	Limtong, S., Kaewwichian, R., Jindamorakot, S., Yongmanitchai, W. & Nakase, T.
318	(2012) Candida wangnamkhiaoensis sp. nov., an anamorphic yeast species in the
319	Hyphopichia clade isolated in Thailand. Antonie van Leeuwenhoek, 102, 23-28.
320	Nagy, L. G., Ohm, R. A., Kovacs, G. M., Floudas, D., Riley, R., Gacser, A., Sipiczki, M.,
321	Davis, J. M., Doty, S. L., de Hoog, G. S., Lang, B. F., Spatafora, J. W., Martin, F. M.,
322	Grigoriev, I. V. & Hibbett, D. S. (2014) Latent homology and convergent regulatory
323	evolution underlies the repeated emergence of yeasts. Nat Commun 5, 4471.
324	Nemecek, J. C., Wüthrich, M. & Klein, B. S. (2006) Global control of dimorphism and
325	virulence in fungi. Science 312, 583–588.
326	Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N. & Larsson, KH. (2008)
327	Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence
328	databases and its implications for molecular species identification. Evolutionary
329	Bioinformatics 4, 193-201
330	O'Donnell, K. (1993) Fusarium and its near relatives. In The Fungal Holomorph: Mitotic,
331	Meiotic and Pleomorphic Speciation in Fungal Systematics, pp. 225-233. Edited by D. R.
332	Reynolds & J. W. Taylor. Wallingford, UK: CAB International.
333	Page, R. D. M. (1996) TreeView: an application to display phylogenetic trees on personal
334	computers. Comput Appl Biosci 12, 357-358.
335	Posada, D. (2008) jModelTest: Phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253–1256.
336	Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., Larget,
337	B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: Efficient Bayesian

338	phylogenetic inference and model choice across a large model space. System Biol 61, 539-
339	542.
340	Rosa, C. A., Jindamorakot, S., Limtong, S., Nakase, T., Lachance, MA., Fidalgo-
341	Jiménez, A., Daniel, H. M., Pagnocca, F. C., Inácio, J. & Morais, P. B. (2009). Synonymy
342	of the yeast genera Moniliella and Trichosporonoides and proposal of Moniliella fonsecae sp.
343	nov. and five new species combinations. Int J Syst Evol Microbiol 59, 425-429.
344	Rosa, C. A., Jindamorakot, S., Limtong, S., Nakase, T., Pagnocca, F. C. & Lachance, M.
345	${f A.}$ (2010). Candida golubevii sp. nov., na asexual yeast related to Metschnikowia clade. Int J
346	Syst Evol Microbiol 60, 704-706.
347	Saccone, C., Lanave, C., Pesole, G. & Preparata, G. (1990) Influence of base composition
348	on quantitative estimates of gene evolution. <i>Methods Enzymol</i> 183 , 570–583.
349	Safar, S. V. B., Gomes, F. C. O., Marques, A. R., Lachance, MA. & Rosa, C. A. (2013)
350	Kazachstania rupicola sp. nov., a yeast species isolated from water tanks of a bromeliad in
351	Brazil. Int J Syst Evol Microbiol 63, 1165-1168.
352	Sampaio, J. P. & Gonçalves, P. (2008) Natural populations of Saccharomyces kudriavzevii
353	in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S.
354	paradoxus. Appl Environ Microbiol 74 , 2144–2152.
355	Sipiczki, M. (2003) Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast
356	that ferments sweet botrytized wines. Int J Syst Evol Microbiol 53, 2079-2083.
357	Sipiczki, M. (2011) Dimorphic cycle in Candida citri sp. nov., a novel yeast species isolated
358	from rotting fruit in Borneo. FEMS Yeast Res 11, 202-208.
359	Sipiczki, M. (2012) Pichia bruneiensis sp. nov., a biofilm-producing dimorphic yeast species
360	isolated from flowers in Borneo. Int J Syst Evol Microbiol 62, 3099-3104.

361	Sipiczki, M. (2013) Detection of yeast species also occurring in substrates associated with
362	animals and identification of a novel dimorphic species in Verbascum flowers from Georgia.
363	Antonie van Leeuwenhoek 103 , 567-576.
364	Sipiczki, M. & Kajdacsi, E. (2009) Jaminaea angkoriensis gen. nov., sp. nov., a novel
365	anamorphic fungus containing an S943 nuclear small subunit rRNA group IB intron
366	represents a basal branch of Microstromatales. Int J Syst Evol Microbiol 59, 914-920.
367	Sipiczki, M., Takeo, K., Yamaguchi, M., Yoshida, S. & Miklos, I. (1998) Environmentally
368	controlled dimorphic cycle in a fission yeast. Microbiol-UK 144, 1319-1330.
369	Sipiczki, M., Pfliegler, W.P. & Holb, I. J. (2013) Metschnikowia species share a pool of
370	diverse rRNA genes differing in regions that determine hairpin-loop structures and evolve by
371	reticulation. PLoS One, 8 , e67384.
372	Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) CLUSTALW: improving the
373	sensitivity of progressive multiple sequence alignment through sequence weighting, positions-
374	specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.
375	van der Walt, J. P., Scott, D. B. & van der Klift, W. C. (1971) Four new, related Candida
376	species from South African insect sources. Antonie van Leeuwenhoek 37, 449-460.
377	van der Walt, J. P. & Yarrow, D. (1984) Methods for the isolation, maintenance,
378	classification and identification of yeasts. In The Yeasts, a Taxonomic Study, 3rd edn, pp 45-
379	104. Edited by N. J. W. Kreger-van Rij. Amsterdam: Elsevier.
380	van Uden, N. & Kolipinski, M. C. (1962) Torulopsis haemulonii nov. spec. a yeast from the
381	Atlantic ocean. Antonie van Leeuwenhoek 28, 78-80.
382	White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and sequencing of fungal
383	ribosomal RNA genes for phylogenetics. In PCR Protocols A Guide to Methods and

- 384 Applications, pp. 315-322. Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White.
- 385 San Diego, CA: Acadamic Press.

Table 1. List of strains

Table 1. List of strains						
Strain	Substrate from	Location of	Date of			
	which the strain	sample collection	sample			
	was isolated		collection			
11-516	Fallen Dok	Ventiane, Laos	2008			
	Champa					
	[Plumeria alba]					
	flower					
11-1006 ^T	Fallen flowers of	Luang Prabang,	2008			
	uncertain origin	Laos				
12-511	Fallen flowers of	Luang Prabang,	2008			
	uncertain origin	Laos				
12-777	Fallen flowers of	Luang Prabang,	2008			
	uncertain origin	Laos				
UFMG-	Bark of the tree	Protected	2011			
CM-	Tapirira	Ecological				
Y6070	guianensis	Reserve of Serra				
		do Lajeado,				
		Taquaruçu,				
		Tocantins state,				
		Brazil				
UFMG-	Bark of the tree	Protected	2011			
CM-	Tapirira	Ecological				
Y6070	guianensis	Reserve of Serra				
		do Lajeado,				
		Taquaruçu,				
		Tocantins state,				
		Brazil				

394

395

396

397

398

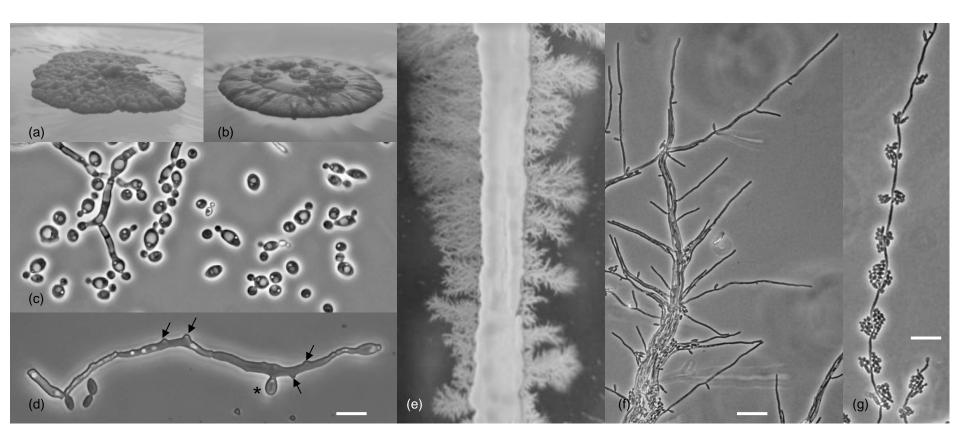
399

400

401

402

Property	Metahyphopichia laotica 11-1006 ^T	Metahyphopichia laotica UFMG- CM-6070	Candida silvanorum CBS 6274 ^{T,*}			
Fermentation of carbon sources						
D-Galactose	+	+	W			
Maltose	-	-	W			
Sucrose	-	-	W			
Trehalose	+	+	W			
Melibiose	-	-	W			
Cellobiose	-	-	-			
Raffinose	W	W	W			
Assimilation of car L-Sorbose D-Arabinose Melibiose	bon compounds - w -	- - -	d d +			
Inulin Starch	-	-	-			
L-Arabinitol	W W	W W	+ +			
Citrate	+	+	+			
Ethanol	-	-	+			
Quinic acid	+	+	-			
Assimilation of nitrogen compounds						
Nitrate	W	-	-			


Ethylamine	-	-	+
Cadaverine	-	-	+
Creatine	+	+	-
Creatinine	+	+	-
Glucosamine	+	+	-
D-Tryptophan	+	+	-
Other tests Growth in vitamin-free medium	v	W	-
Acid production	+	+	-
37 °C	-	W	+

*CBS (Centraalbureau voor Schimmelcultures):

http://www.cbs.knaw.nl/collections/BioloMICS.aspx and Barnett et al. (1990)

Downloaded from www.rnicrobiologyresearch.org by
IP: 128.103.149.52
On: Tue. 19 Apr 2016 22:45:25

410	(legends)
411	
412	Fig. 1. Morphology of <i>Metahyphopichia laotica</i> . Colony morphology of strains (a) 11-1006 ^T
413	and (b) 11-516 on YEA after incubation for 1 month at 25 °C. (c) Yeast cells and
414	pseudohyphae in an overnight culture of 11-1006 ^T growing in YEL at 25 °C. (d) A
415	pseudohypha of 11-1006 ^T with a blastoconidium (star) and scars (arrows), where conidia were
416	developed. (e) Formation of mycelium in YEA film sandwiched between a glass slide and a
417	cover slip. (f) Branching hyphae in the mycelium. (g) Blastoconidia (arrow) and satellite yeast
418	colonies formed along a hypha. Bar, 5 μm for (c) and (d), 20 μm for (f) and 25 μm for (g).
419	
420	Fig. 2. Phylogenetic relationships of <i>Metahyphopichia laotica</i> 11-1006 ^T and UFMG CM-
421	Y6070 with related species and genera determined from Bayesian analysis of concatenated
422	chromosomal sequences of SSU rRNA, D1/D2 domains of LSU rRNA, ACT1 and TEF1. The
423	type strain of Schizosaccharomyces pombe was the outgroup in the analysis. Posterior
424	probability values are given at branch nodes. See Table 1S for sequence accession numbers.
425	For concatenation, Clustal X alignments were prepared for each gene separately and the
426	terminal regions not overlapping with the shortest sequence were removed from all
427	sequences. The shortened sequences were then concatenated and aligned with Clustal X. This
428	alignment was used in the Bayesian analysis.
429	
430	

(Fig. 2)

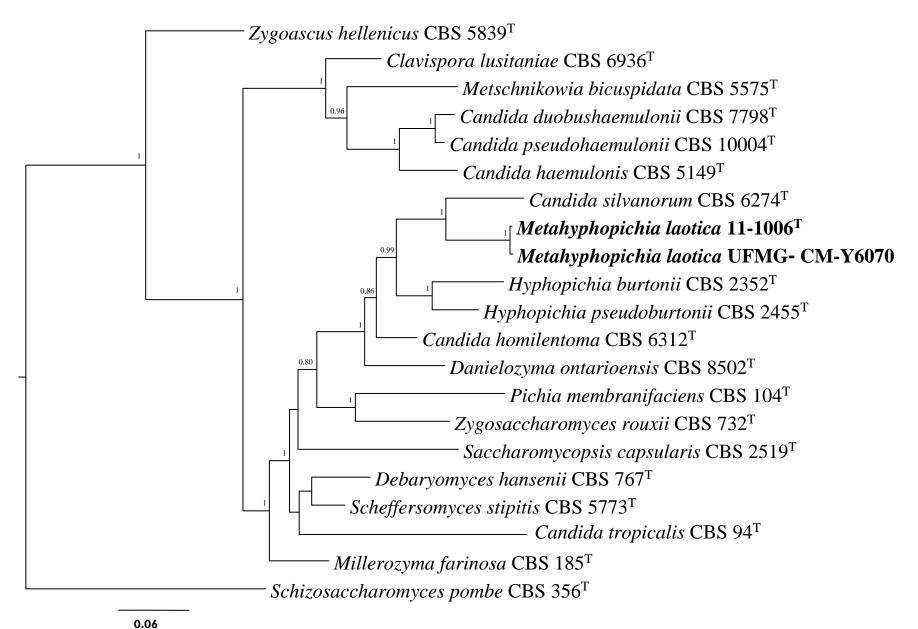


Table 1S. Accession numbers of sequences

Species	CBS*	SSU [†]	LSU [†]	ACT1 [†]	TEF1 [†]
Candidi duobushaemulonii	7798^{T}	KU557488	JX459765	AJ508472	KU746855
Candida haemulonis	5149 ^T	AB013572	U44812	KU705473	KU705474
Candida homilentoma	6312^{T}	AB018166	U45716	KU728670	KU841443
Candida pseudohaemulonii	10004^{T}	KU570385	AB118792	KU841444	KU841445
Candida silvanorum	6274^{T}	AB018174	U71068	KU728669	KU728668
Candida tropicalis	94 ^T	EU348785	U45749	AJ508499	AY497660
Clavispora lusitaniae	6936^{T}	JQ689030	JQ698900	AJ389065	JQ699057
Danielozyma ontarioensis	8502^{T}	AY500849	AF017244	KU746856	KF964132
Debaromyces hansenii	767^{T}	JQ698910	JQ689041	AJ508505	JQ699068
Hyphopichia burtonii	2352_{-}^{T}	AB018177	U45712	AJ508512	KU609071
Hyphopichia pseudoburtonii	2455^{T}	KU557487	GQ389650	KU609072	KU705472
Metahyphopichia laotica	13022^{T}	JX515977	JX515975	KM986114	KM986115
11-1006 ^T					
Metahyphopichia laotica		KU609070	KC206086	KP316405	KP316406
UFMG-CM-Y6070					
Metschnikowia bicuspidata	5575 ^T	JQ698902	U44822	AJ745130	FJ238407
Millerozyma farinosa	185^{T}	AB054281	JQ689046	AJ508514	JQ699073
Pichia membranefaciens	107^{T}	JQ698896	EF550227	AJ389088	JQ699053
Saccharomycopsis	2519^{T}	JQ698884	JQ689010	AJ389092	JQ699034
capsularis					
Scheffersomyces stipitis	5773 ^T	Q698912	JQ689044	AJ508520	JQ699071
Schizosaccharomyces	356^{T}	JQ698936	AY048171	Y00447	EF552572
pombe					
Zygoascus hellenicus	5839^{T}	GU597328	JQ689060	AJ508498	GU597340
Zygosaccharomyces rouxii	732 ^T	X90758	JQ689016	AJ878414	JQ699040

^{*}Strain number in the culture collection Centralbureau voor Schimmelcultures (CBS), Utrecht,

The Netherlands

[†]Gene sequences. SSU, nuclear small subunit rRNA gene; LSU, D1/D2 domain of the nuclear large subunit rRNA gene; *ACT1*, actin gene; *TEF1*, translation elongation factor 1-α gene.

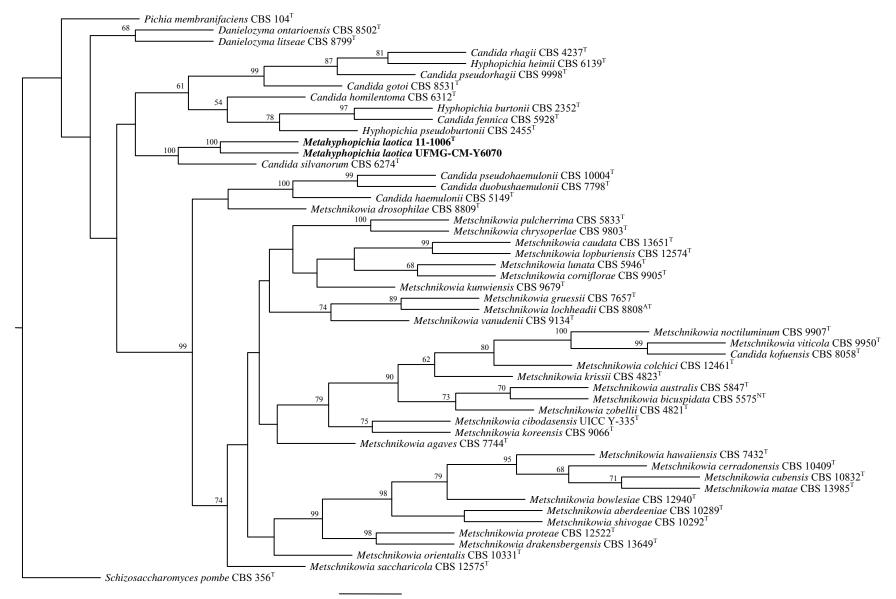


Fig. 1S. A phylogenetic tree based on the PhyML analysis of the sequences of the D1/D2 domains of the large subunit rRNA genes. Bootstrap

values >50% based on 1000 resamplings are shown at branch nodes. Outgroup: Schizosaccharomyces pombe. GenBank accession numbers of

the sequences are shown in brackets.