16 research outputs found

    Design and conduct of 'Xtreme Alps' : a double-blind, randomised controlled study of the effects of dietary nitrate supplementation on acclimatisation to high altitude

    Get PDF
    The study of healthy human volunteers ascending to high altitude provides a robust model of the complex physiological interplay that emulates human adaptation to hypoxaemia in clinical conditions. Nitric oxide (NO) metabolism may play an important role in both adaptation to high altitude and response to hypoxaemia during critical illness at sea level. Circulating nitrate and nitrite concentrations can be augmented by dietary supplementation and this is associated with improved exercise performance and mitochondrial efficiency. We hypothesised that the administration of a dietary substance (beetroot juice) rich in nitrate would improve oxygen efficiency during exercise at high altitude by enhancing tissue microcirculatory blood flow and oxygenation. Furthermore, nitrate supplementation would lead to measurable increases in NO bioactivity throughout the body. This methodological manuscript describes the design and conduct of the ‘Xtreme Alps’ expedition, a double-blind randomised controlled trial investigating the effects of dietary nitrate supplementation on acclimatisation to hypobaric hypoxia at high altitude in healthy human volunteers. The primary outcome measure was the change in oxygen efficiency during exercise at high altitude between participants allocated to receive nitrate supplementation and those receiving a placebo. A number of secondary measures were recorded, including exercise capacity, peripheral and microcirculatory blood flow and tissue oxygenation. Results from this study will further elucidate the role of NO in adaption to hypoxaemia and guide clinical trials in critically ill patients. Improved understanding of hypoxaemia in critical illness may provide new therapeutic avenues for interventions that will improve survival in critically ill patients

    Effects of dietary nitrate supplementation on microvascular physiology at 4559 m altitude – a randomised controlled trial (Xtreme Alps)

    Get PDF
    Native highlanders (e.g. Sherpa) demonstrate remarkable hypoxic tolerance, possibly secondary to higher levels of circulating nitric oxide (NO) and increased microcirculatory blood flow. As part of the Xtreme Alps study (a randomised placebo-controlled trial of dietary nitrate supplementation under field conditions of hypobaric hypoxia), we investigated whether dietary supplementation with nitrate could improve NO availability and microvascular blood flow in lowlanders. Plasma measurements of nitrate, nitrite and nitroso species were performed together with measurements of sublingual (sidestream dark-field camera) and forearm blood flow (venous occlusion plethysmography) in 28 healthy adult volunteers resident at 4559 m for 1 week; half receiving a beetroot-based high-nitrate supplement and half receiving an identically-tasting low nitrate 'placebo'. Dietary supplementation increased plasma nitrate concentrations 4-fold compared to the placebo group, both at sea level (SL; 19.2 vs 76.9 μM) and at day 5 (D5) of high altitude (22.9 vs 84.3 μM,

    Cardiopulmonary exercise testing for the evaluation of perioperative risk in non-cardiopulmonary surgery

    No full text
    The use of cardiopulmonary exercise testing (CPET) as a preoperative risk stratification tool for a range of non-cardiopulmonary surgery is increasing. The utility of CPET in this role is dependent on the technology being able to identify accurately and reliably those patients at increased risk of perioperative events when compared with existing risk stratification tools. This article identifies and reviews systematically the current literature regarding the use of CPET as a preoperative tool for stratifying risk in major non-cardiopulmonary surgery. Specifically, it focuses on evaluating the capacity of CPET variables to predict the risk of postoperative complications and mortality in comparison to other methods of risk assessment. Furthermore, the potential for combining results from CPET and non-CPET methods of risk prediction to enhance the capacity to identify high risk patients is considered. The review indicates that CPET can identify patients at increased risk of adverse perioperative outcomes. However, the selection of variables and threshold values to indicate high risk differ for different surgical procedures and underlying conditions. Furthermore, the available data suggest that CPET variables outperform alternative methods of preoperative risk stratification. Several studies also identify that CPET variables may be used in combination with non-CPET variables to increase perioperative risk prediction accuracy. These findings illustrate that CPET has the capacity to identify patients at increased risk of adverse outcome before a range of non-cardiopulmonary surgical procedures. Further research is required to optimise its use, potentially by combining CPET results with alternative methods of risk stratification

    Saccharomyces cerevisiae fermentation products (SCFP) stabilize the ruminal microbiota of lactating dairy cows during periods of a depressed rumen pH

    No full text
    Background: Effects of Saccharomyces cerevisiae fermentation products (SCFP) on rumen microbiota were determined in vitro and in vivo under a high and a depressed pH. The in vitro trial determined the effects of Original XPC and NutriTek (Diamond V, Cedar Rapids, IA) at doses of 1.67 and 2.33 g/L, respectively, on the abundances of rumen bacteria under a high pH (> 6.3) and a depressed pH (5.8-6.0) using quantitative PCR (qPCR). In the in vivo trial eight rumen-cannulated lactating dairy cows were used in a cross-over design. Cows were randomly assigned to SCFP treatments (Original XPC, Diamond V, Cedar Rapids, IA) or control (No SCFP) before two 5-week experimental periods. During the second period, SCFP treatments were reversed. Cows on the SCFP treatment were supplemented with 14 g/d of SCFP and 126 g/d of ground corn. Other cows received 140 g/d ground corn. During the first 4 wk. of each period, cows received a basal diet containing 153 g/kg of starch. During week 5 of both periods, the rumen pH was depressed by a SARA challenge. This included replacing 208 g/kg of the basal diet with pellets of ground wheat and barley, resulting in a diet that contained 222 g/kg DM of starch. Microbial communities in rumen liquid digesta were examined by pyrosequencing, qPCR, and shotgun metagenomics. Results: During the in vitro experiment, XPC and NutriTek increased the relative abundances of Ruminococcus flavefaciens, and Fibrobacter succinogenes determined at both the high and the depressed pH, with NutriTek having the largest effect. The relative abundances of Prevotella brevis, R. flavefaciens, ciliate protozoa, and Bifidobacterium spp. were increased by XPC in vivo. Adverse impacts of the in vivo SARA challenge included reductions of the richness and diversity of the rumen microbial community, the abundances of Bacteroidetes and ciliate protozoa in the rumen as determined by pyrosequencing, and the predicted functionality of rumen microbiota as determined by shotgun metagenomics. These reductions were attenuated by XPC supplementation. Conclusions: The negative effects of grain-based SARA challenges on the composition and predicted functionality of rumen microbiota are attenuated by supplementation with SCFP

    Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves

    Get PDF
    The nature of weaning, considered the most stressful and significant transition experienced by dairy calves, influences the ability of a calf to adapt to the dramatic dietary shift and thus, can influence the severity of production losses through the weaning transition. However, the effects of various feeding strategies on the development of rumen or fecal microbiota across weaning are yet to be examined. Here we characterized the pre- and post-weaning ruminal and fecal microbiomes of Holstein dairy calves exposed to two different weaning strategies, gradual (step-down) or abrupt. We describe the shifts towards a mature ruminant state, a transition which is hastened by the introduction of the solid feeds initiating ruminal fermentation. Additionally, we discuss the predicted functional roles of these communities, which also appear to represent that of the mature gastrointestinal system prior to weaning, suggesting functional maturity. This assumed state of readiness also appeared to negate the effects of weaning strategy on ruminal and fecal microbiomes and therefore, we conclude that the shift in gastrointestinal microbiota may not account for the declines in gain and intakes observed in calves during an abrupt weaning

    Sustained vasomotor control of skin microcirculation in Sherpas versus altitude-naive lowlanders: Experimental evidence from Xtreme Everest 2

    No full text
    Enhanced oxygen delivery, consequent to an increased microvascular perfusion, has been postulated to play a key role in the physiological adaptation of Tibetan highlanders to the hypobaric hypoxia encountered at high altitude. We tested the hypothesis that Sherpas, when exposed to graded hypobaric hypoxia, demonstrate enhanced vasomotor and neurovascular control to maintain microcirculatory flux, and thus tissue oxygenation, when compared with altitude‐naive lowlanders. Eighty‐three lowlanders [39 men and 44 women, 38.8 (13.1) years old; mean (SD)] and 61 Sherpas [28 men and 33 women, 27.9 (6.9) years old] were studied on ascent to Everest Base Camp over 11 days. Skin blood flux and tissue oxygen saturation were measured simultaneously using combined laser Doppler fluximetry and white light spectroscopy at baseline, 3500 and 5300 m. In both cohorts, ascent resulted in a decline in the sympathetically mediated microvascular constrictor response (P < 0.001), which was more marked in lowlanders than in Sherpas (P < 0.001). The microvascular dilator response evaluated by postocclusive reactive hyperaemia was significantly greater in Sherpas than in lowlanders at all sites (P < 0.002). Spectral analysis of the blood flux signals revealed enhanced myogenic (vasomotion) activity in Sherpas, which was unaffected by ascent to 5300 m. Although skin tissue oxygenation was lower in Sherpas than in lowlanders, the oxygen unloading rate was faster, and deoxyhaemoglobin levels higher, at all altitudes. Together, these data suggest that Sherpas, when exposed to hypobaric hypoxia, demonstrated superior preservation of peripheral microcirculatory perfusion compared with altitude‐naive lowlanders. The physiological differences in local microvasculature vasomotor and neurovascular control may play a key role in Sherpa adaptation to high‐altitude hypobaric hypoxia by sustaining local perfusion and tissue oxygenation

    Design and conduct of 'Xtreme Alps': A double-blind, randomised controlled study of the effects of dietary nitrate supplementation on acclimatisation to high altitude ☆

    No full text
    The study of healthy human volunteers ascending to high altitude provides a robust model of the complex physiological interplay that emulates human adaptation to hypoxaemia in clinical conditions. Nitric oxide (NO) metabolism may play an important role in both adaptation to high altitude and response to hypoxaemia during critical illness at sea level. Circulating nitrate and nitrite concentrations can be augmented by dietary supplementation and this is associated with improved exercise performance and mitochondrial efficiency. We hypothesised that the administration of a dietary substance (beetroot juice) rich in nitrate would improve oxygen efficiency during exercise at high altitude by enhancing tissue microcirculatory blood flow and oxygenation. Furthermore, nitrate supplementation would lead to measurable increases in NO bioactivity throughout the body. This methodological manuscript describes the design and conduct of the 'Xtreme Alps' expedition, a double-blind randomised controlled trial investigating the effects of dietary nitrate supplementation on acclimatisation to hypobaric hypoxia at high altitude in healthy human volunteers. The primary outcome measure was the change in oxygen efficiency during exercise at high altitude between participants allocated to receive nitrate supplementation and those receiving a placebo. A number of secondary measures were recorded, including exercise capacity, peripheral and microcirculatory blood flow and tissue oxygenation. Results from this study will further elucidate the role of NO in adaption to hypoxaemia and guide clinical trials in critically ill patients. Improved understanding of hypoxaemia in critical illness may provide new therapeutic avenues for interventions that will improve survival in critically ill patients
    corecore