12,965 research outputs found

    Periodic Neural Activity Induced by Network Complexity

    Get PDF
    We study a model for neural activity on the small-world topology of Watts and Strogatz and on the scale-free topology of Barab\'asi and Albert. We find that the topology of the network connections may spontaneously induce periodic neural activity, contrasting with chaotic neural activities exhibited by regular topologies. Periodic activity exists only for relatively small networks and occurs with higher probability when the rewiring probability is larger. The average length of the periods increases with the square root of the network size.Comment: 4 pages, 5 figure

    Geometric classical and total correlations via trace distance

    Full text link
    We introduce the concepts of geometric classical and total correlations through Schatten 1-norm (trace norm), which is the only Schatten p-norm able to ensure a well-defined geometric measure of correlations. In particular, we derive the analytical expressions for the case of two-qubit Bell-diagonal states, discussing the superadditivity of geometric correlations. As an illustration, we compare our results with the entropic correlations, discussing both their hierarchy and monotonicity properties. Moreover, we apply the geometric correlations to investigate the ground state of spin chains in the thermodynamic limit. In contrast to the entropic quantifiers, we show that the classical correlation is the only source of 1-norm geometric correlation that is able to signaling an infinite-order quantum phase transition.Comment: v2: published versio

    Vortex and gap generation in gauge models of graphene

    Full text link
    Effective quantum field theoretical continuum models for graphene are investigated. The models include a complex scalar field and a vector gauge field. Different gauge theories are considered and their gap patterns for the scalar, vector, and fermion excitations are investigated. Different gauge groups lead to different relations between the gaps, which can be used to experimentally distinguish the gauge theories. In this class of models the fermionic gap is a dynamic quantity. The finite-energy vortex solutions of the gauge models have the flux of the "magnetic field" quantized, making the Bohm-Aharonov effect active even when external electromagnetic fields are absent. The flux comes proportional to the scalar field angular momentum quantum number. The zero modes of the Dirac equation show that the gauge models considered here are compatible with fractionalization

    Framework Programmable Platform for the advanced software development workstation: Framework processor design document

    Get PDF
    The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated

    Phase-resolved HST/STIS spectroscopy of the exposed white dwarf in the high-field polar AR UMa

    Get PDF
    Phase-resolved HST/STIS ultraviolet spectroscopy of the high-field polar AR UMa confirms that the WD photospheric Ly alpha Zeeman features are formed in a magnetic field of ~200 MG. In addition to the Ly alpha pi and sigma+ components, we detect the forbidden hydrogen 1s0->2s0 transition, which becomes ``enabled'' in the presence of both strong magnetic and electric fields. Our attempt in fitting the overall optical+UV low state spectrum with single temperature magnetic WD models remains rather unsatisfactory, indicating either a shortcoming in the present models or a new physical process acting in AR UMa. As a result, our estimate of the WD temperature remains somewhat uncertain, Twd=20000+-5000K. We detect a broad emission bump centered at ~1445A and present throughout the entire binary orbit, and a second bump near ~1650A, which appears only near the inferior conjunction of the secondary star. These are suggestive of low harmonic cyclotron emission produced by low-level (M-dot~1e-13 Msun/yr) accretion onto both magnetic poles. However, there is no evidence in the power spectrum of light variations for accretion in gas blobs. The observed Ly alpha emission line shows a strong phase dependence with maximum flux and redshift near orbital phase phi~0.3, strongly indicating an origin on the trailing hemisphere of the secondary star. An additional Ly alpha absorption feature with similar phasing as the Ly alpha emission, but a \~700km/s blueshift could tentatively be ascribed to absorption of WD emission in a moderately fast wind. We derive a column density of neutral hydrogen of NH=(1.1+-1.0)1e18 cm**-2, the lowest of any known polar.Comment: 26 pages, 10 figures, AAS TeX 5.0, accepted for publication in the Astrophysical Journa

    Observation of environment-induced double sudden transitions in geometric quantum correlations

    Full text link
    Correlations in quantum systems exhibit a rich phenomenology under the effect of various sources of noise. We investigate theoretically and experimentally the dynamics of quantum correlations and their classical counterparts in two nuclear magnetic resonance setups, as measured by geometric quantifiers based on trace-norm. We consider two-qubit systems prepared in Bell diagonal states, and perform the experiments in decohering environments resulting from Bell diagonal-preserving Markovian local noise. We then report the first observation of environment-induced double sudden transitions in the geometric quantum correlations, a genuinely nonclassical effect not observable in classical correlations. The evolution of classical correlations in our physical implementation reveals in turn the finite-time relaxation to a pointer basis under nondissipative decoherence, which we characterize geometrically in full analogy with predictions based on entropic measures.Comment: 5 pages, 2 figures. v2: Minor corrections. Published versio
    corecore