17 research outputs found

    Genetic Structure, Nestmate Recognition and Behaviour of Two Cryptic Species of the Invasive Big-Headed Ant Pheidole megacephala

    Get PDF
    info:eu-repo/semantics/publishe

    Diplopods Succession Associated to Covered Sus Scrofa Domesticus (Linnaeus, 1758) Carrions Exposed in Various Habitats in the Equatorial Forest of Malombo (Center Region of Cameroon, Africa) : First Studies

    No full text
    Most forensic studies are focused on Diptera, Coleoptera and hymenoptera pattern colonization while neglecting other arthropods precisely Diplopods succession on carrions. Little information is available on the postmortem colonization by millipides and the decomposition process they initiate under tropical biogeoclimatic countries. These diplopods have never been mentioned as part of the colonization of arthropods of a dead body and yet they participate actively and their presence would never be a coincidence. Forensic science need increased databases detailing the distribution, ecology, and phenology of necrophagous arthropods, including diplopods. From Junuary to November 2018, diplopod successions of covered pig carrion were studied in various habitats in the equatorial forest of Malombo in Cameroon. Six stages of decomposition were recognized: fresh, bloating, advanced bloating, active decomposition, advanced decomposition, and skeletization. A total of 135 diplopods belonging three order (Spirostreptida, Polydesmida and Spirobolida) and 6 species (Aporodesmus gabonicus, Aporodesmus sp., Urodesmus cornutus, Trinciulus laevicolis, Haplothysanus chapellei and Spirostreptidae gen sp) were collected from covered pig carrions. Highest abundance of millipedes occured in the habitat 2 and the lowest in the habitat 4. Haplothysanus chapellei (Odontopygidae) has been the most abundant species with 91,11 % of the community of millipedes. The succession and duration of decay stages, habitat and stage specificity provide key information in field studies and their potential application in forensic science

    Effets de l’alimentation sur les performances de croissance et le sex-ratio de la mouche soldat noire Hermetia illucens (Diptera: Stratiomyidae)

    Get PDF
    Dans la recherche de nouvelles sources d’aliment écologiquement durable, de nombreux travaux de recherche ont montré le rôle alternatif que les larves de la mouche soldat noire Hermetia illucens pourraient apporter dans l'alimentation animale. C’est dans cette optique que notre étude a été menée avec pour objectif de rechercher, au sein des matières organiques végétales locales (MOVL), des potentielles diètes de forte valeur nutritionnelle et de tester leurs effets sur les performances de croissances des différents stades de développement de la mouche Hermetia illucens. Pour ce faire, cinq types de diètes à base des MOVL ont été formulés, additionnés aux larves âgées de deux jours et répliqués cinq fois. Il ressort de cette étude que la diète constituée du mélange des tourteaux et de la Drêche de maïs a permis d’obtenir de meilleures performances de croissance larvaire (gain de poids, taux de croissance spécifique et croissance journalière) suivie de la diète composée de la Drêche et de la levure de maïs. Ces deux diètes ont également permis aux larves de boucler tous les stades de développement en seulement 8 jours de suivi et d’obtenir un sex-ratio des sexués équilibré comparativement aux autres diètes à la fin de l’expérimentation. Ces résultats ont montré que des diètes à base de MOVL pourraient optimiser les élevages ainsi que les performances de croissance des larves de H. illucens en vue de leur utilisation ultérieure dans l’alimentation animale

    Study site and nest locations.

    No full text
    <p>A, Locations of the two ecological zones (+) and of the eight populations collected (−). YM: Ministère de la Recherche Scientifique et de l'Innovation; YN: North of Yaoundé; YS: South of Yaoundé; YU: Université de Yaoundé I; CA, CB and CC: populations A, B and C in the Campo Forest Reserve; AK: Akok. B, Locations of the nests within each of the eight populations. Populations YM, YN, YS and YU correspond to <i>P. megacephala</i> var. 1 and populations AK, CA, CB and CC to <i>P. megacephala</i> var. 2. Nests belonging to the same supercolony (cf. Results section) are indicated by the same symbol.</p

    Hierarchical analysis of molecular variance (AMOVA) with country as grouping factor (Cameroon, <i>n</i> = 304; Australia, <i>n</i> = 419; South Africa, <i>n</i> = 20).

    No full text
    <p>Hierarchical analysis of molecular variance (AMOVA) with country as grouping factor (Cameroon, <i>n</i> = 304; Australia, <i>n</i> = 419; South Africa, <i>n</i> = 20).</p

    Neighbour-joining tree of <i>Pheidole megacephala</i> from different localities, the sister species <i>Pheidole sexspinosa</i> and <i>P. xerophila</i>, and the outgroup <i>Aphaenogaster senilis</i> based on COI.

    No full text
    <p>The percentage bootstrap supports are shown above the branches for the major groups. GeneBank accession numbers, population or supercolonies are indicated between brackets. Australian, South African and Malagasy samples refer to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031480#pone.0031480-Fournier1" target="_blank">[34]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031480#pone.0031480-Fournier2" target="_blank">[40]</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031480#pone.0031480-Smith1" target="_blank">[39]</a>, respectively. Mauritian samples come from personal collection (DF). Sequences for <i>P. sexspinosa</i>, <i>P. xerophyla</i> and <i>Aphaenogaster senili</i>s are taken from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031480#pone.0031480-Moreau1" target="_blank">[38]</a>.</p

    Chemical differentiation between the seven populations (A) and the four supercolonies (B).

    No full text
    <p>The differentiation is illustrated by a factor map of the two first axes of the canonical discriminant analysis on the relative proportions of cuticular lipids. Functions one and two account for 98.7% and 99.7% of the total variability among populations and supercolonies, respectively. Only group centroids are plotted on figure A. <i>P. megacephala</i> var. 1: populations YM, YN, YS, YU and supercolonies SC-1, SC2; <i>P. megacephala</i> var. 2: populations AK, CA, CB, CC and supercolonies SC-3, SC-4.</p
    corecore