1,929 research outputs found

    Indications of a sub-linear and non-universal Kennicutt-Schmidt relationship

    Full text link
    We estimate the parameters of the Kennicutt-Schmidt (KS) relationship, linking the star formation rate (Sigma_SFR) to the molecular gas surface density (Sigma_mol), in the STING sample of nearby disk galaxies using a hierarchical Bayesian method. This method rigorously treats measurement uncertainties, and provides accurate parameter estimates for both individual galaxies and the entire population. Assuming standard conversion factors to estimate Sigma_SFR and Sigma_mol from the observations, we find that the KS parameters vary between galaxies, indicating that no universal relationship holds for all galaxies. The KS slope of the whole population is 0.76, with the 2sigma range extending from 0.58 to 0.94. These results imply that the molecular gas depletion time is not constant, but varies from galaxy to galaxy, and increases with the molecular gas surface density. Therefore, other galactic properties besides just Sigma_mol affect Sigma_SFR, such as the gas fraction or stellar mass. The non-universality of the KS relationship indicates that a comprehensive theory of star formation must take into account additional physical processes that may vary from galaxy to galaxy.Comment: 7 pages, 2 figures, 1 table. Updated to match MNRAS accepted versio

    The biogenetic law and the Gastraea theory: From Ernst Haeckel's discoveries to contemporary views

    Get PDF
    More than 150 years ago, in 1866, Ernst Haeckel published a book in two volumes called Generelle Morphologie der Organismen ( General Morphology of Organisms ) in the first volume of which he formulated his biogenetic law, famously stating that ontogeny recapitulates phylogeny. Here, we describe Haeckel's original idea as first formulated in the Generelle Morphologie der Organismen and later further developed in other publications until the present situation in which molecular data are used to test the “hourglass model,” which can be seen as a modern version of the biogenetic law. We also tell the story about his discovery, while traveling in Norway, of an unknown organism, Magosphaera planula , that was important in that it helped to precipitate his ideas into what was to become the Gastraea theory. We also follow further development and reformulations of the Gastraea theory by other scientists, notably the Russian school. Elias Metchnikoff developed the Phagocytella hypothesis for the origin of metazoans based on studies of a colonial flagellate. Alexey Zakhvatin focused on deducing the ancestral life cycle and the cell types of the last common ancestor of all metazoans, and Kirill V. Mikhailov recently pursued this line of research further

    Inflationary solutions in the brane-world and their geometrical interpretation

    Get PDF
    We consider the cosmology of a pair of domain walls bounding a five-dimensional bulk space-time with negative cosmological constant, in which the distance between the branes is not fixed in time. Although there are strong arguments to suggest that this distance should be stabilized in the present epoch, no such constraints exist for the early universe and thus non-static solutions might provide relevant inflationary scenarios. We find the general solution for the standard ansatz where the bulk is foliated by planar-symmetric hypersurfaces. We show that in all cases the bulk geometry is that of anti-de Sitter (AdS_5). We then present a geometrical interpretation for the solutions as embeddings of two de Sitter (dS_4) surfaces in AdS_5, which provide a simple interpretation of the physical properties of the solutions. A notable feature explained in the analysis is that two-way communication between branes expanding away from one another is possible for a finite amount of time, after which communication can proceed in one direction only. The geometrical picture also shows that our class of solutions (and related solutions in the literature) are not completely general, contrary to some claims. We then derive the most general solution for two walls in AdS_5. This includes novel cosmologies where the brane tensions are not constrained to have opposite signs. The construction naturally generalizes to arbitrary FRW cosmologies on the branes.Comment: 24 pages, 9 figure

    The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang

    Get PDF
    We propose a cosmological scenario in which the hot big bang universe is produced by the collision of a brane in the bulk space with a bounding orbifold plane, beginning from an otherwise cold, vacuous, static universe. The model addresses the cosmological horizon, flatness and monopole problems and generates a nearly scale-invariant spectrum of density perturbations without invoking superluminal expansion (inflation). The scenario relies, instead, on physical phenomena that arise naturally in theories based on extra dimensions and branes. As an example, we present our scenario predominantly within the context of heterotic M-theory. A prediction that distinguishes this scenario from standard inflationary cosmology is a strongly blue gravitational wave spectrum, which has consequences for microwave background polarization experiments and gravitational wave detectors.Comment: 67 pages, 4 figures. v2,v3: minor corrections, references adde

    Towards quantitative Low Energy Ion Scattering on CaSiO3_3 from Comparison to Multiple-Scattering-Resolved Dynamical Binary Collision Approximation Simulations

    Full text link
    We perform Low Energy Ion Scattering with 1\,keV He ions on CaSiO3_3 using a commercial electrostatic detector system and determine the charge fraction of scattered ions from comparison with Binary Collision Approximation simulations. The simulations take dynamical surface changes due to surface cleaning Ar sputtering into account and scattered He particles are separated into single, dual, and multiple scattering trajectories. We find that the charge fraction of single and dual scattered He is about 10 times higher than the one for multiple collisions. Our results show that quantitative concentration profiles can be inferred from this method, if the charge fraction components are determined first

    Cryofouling avoidance in the Antarctic scallop Adamussium colbecki

    Get PDF
    The presence of supercooled water in polar regions causes anchor ice to grow on submerged objects, generating costly problems for engineered materials and life-endangering risks for benthic communities. The factors driving underwater ice accretion are poorly understood, and passive prevention mechanisms remain unknown. Here we report that the Antarctic scallop Adamussium colbecki appears to remain ice-free in shallow Antarctic marine environments where underwater ice growth is prevalent. In contrast, scallops colonized by bush sponges in the same microhabitat grow ice and are removed from the population. Characterization of the Antarctic scallop shells revealed a hierarchical micro-ridge structure with sub-micron nano-ridges which promotes directed icing. This concentrates the formation of ice on the growth rings while leaving the regions in between free of ice, and appears to reduce ice-to-shell adhesion when compared to temperate species that do not possess highly ordered surface structures. The ability to control the formation of ice may enable passive underwater anti-icing protection, with the removal of ice possibly facilitated by ocean currents or scallop movements. We term this behavior cryofouling avoidance. We posit that the evolution of natural anti-icing structures is a key trait for the survival of Antarctic scallops in anchor ice zones.This work was supported by the European Union’s Horizon 2020 research and innovation program LubISS No. 722497 (W.S.Y.W.), the German Research Foundation (DFG) with the Priority Programme 2171 (L.H.), the NSF Award No. OPP 1559691 (P.A.C.). The Antarctic fieldwork was supported by the US Antarctic Program under OPP 1559691 to P.A.C. and OPP 1341612 to S. Bowser. We thank S. Bowser, H. Kaiser, and M. Koonce for their assistance in the field, G. Glaser, R. Berger, H. Burg for technical support, A. Naga, D. Vollmer, H.-J. Butt, and M. Bonn for stimulating discussions and the reviewers L. Harper and J. Raymond, whose comments helped to improve this manuscript.Ye

    Titanium elastic nails versus spica cast in pediatric femoral shaft fractures:A systematic review and meta-analysis of 1012 patients

    Get PDF
    Background: There is a general consensus on the management of femoral fractures in children younger than two years and adolescents older than sixteen years. The best treatment for patients younger than sixteen years of age is still debatable. Titanium Elastic Nails (TEN), is widely used with some evidence, nonetheless, we undertook a systematic meta-analysis to assess the efficacy of TEN compared to Spica cast for the management of femoral shaft fracture in children aged between 2 to 16 years old. Methods: A computer literature search of PubMed, Scopus, Web of Science, CINAHL and Cochrane Central was conducted using relevant keywords. We included clinical trials and observational studies that compared TEN versus Spica cast; Records were screened for eligible studies and data were extracted and synthesized using Review Manager version 5.3 for Windows. Our search found 573 unique articles. After screening the abstract and relevant full text, 12 studies with a total of 1012 patients were suitable for the final analysis. Results: In terms terms of union (in weeks), the reported effect sizes favoured the TEN group in two included studies only. Moreover, the overall standardized mean difference in sagittal (SMD -0.48, 95% CI [-0.70 to -0.26], P<0.001) and coronal angulations (SMD -0.66, 95% CI [-1.00 to -0.31], P<0.001) favored TEN fixation in management of femoral fractures younger than 16 years. The reported length of hospital stay was not consistent across studies. The overall risk ratio of malalignment (RR=0.39, 95% CI [0.27 to 0.57], P<0.001) favored the TEN as well as walking independently. Based on our analysis, TEN treatment is superior to traction and hip spica for femoral fractures in patients younger than 16 years old. Conclusion: Based on our analysis we recommend the use of TEN fixation in management of pediatric femoral fractures in patients younger than 16 years
    • 

    corecore