6 research outputs found

    Using random forest and decision tree models for a new vehicle prediction approach in computational toxicology

    Get PDF
    yesDrug vehicles are chemical carriers that provide beneficial aid to the drugs they bear. Taking advantage of their favourable properties can potentially allow the safer use of drugs that are considered highly toxic. A means for vehicle selection without experimental trial would therefore be of benefit in saving time and money for the industry. Although machine learning is increasingly used in predictive toxicology, to our knowledge there is no reported work in using machine learning techniques to model drug-vehicle relationships for vehicle selection to minimise toxicity. In this paper we demonstrate the use of data mining and machine learning techniques to process, extract and build models based on classifiers (decision trees and random forests) that allow us to predict which vehicle would be most suited to reduce a drug’s toxicity. Using data acquired from the National Institute of Health’s (NIH) Developmental Therapeutics Program (DTP) we propose a methodology using an area under a curve (AUC) approach that allows us to distinguish which vehicle provides the best toxicity profile for a drug and build classification models based on this knowledge. Our results show that we can achieve prediction accuracies of 80 % using random forest models whilst the decision tree models produce accuracies in the 70 % region. We consider our methodology widely applicable within the scientific domain and beyond for comprehensively building classification models for the comparison of functional relationships between two variables

    Social media analysis for product safety using text mining and sentiment analysis

    No full text
    NoThe growing incidents of counterfeiting and associated economic and health consequences necessitate the development of active surveillance systems capable of producing timely and reliable information for all stake holders in the anti-counterfeiting fight. User generated content from social media platforms can provide early clues about product allergies, adverse events and product counterfeiting. This paper reports a work in progress with contributions including: the development of a framework for gathering and analyzing the views and experiences of users of drug and cosmetic products using machine learning, text mining and sentiment analysis; the application of the proposed framework on Facebook comments and data from Twitter for brand analysis, and the description of how to develop a product safety lexicon and training data for modeling a machine learning classifier for drug and cosmetic product sentiment prediction. The initial brand and product comparison results signify the usefulness of text mining and sentiment analysis on social media data while the use of machine learning classifier for predicting the sentiment orientation provides a useful tool for users, product manufacturers, regulatory and enforcement agencies to monitor brand or product sentiment trends in order to act in the event of sudden or significant rise in negative sentiment

    Using computational methods for the prediction of drug vehicles

    No full text
    NoDrug vehicles are chemical carriers that aid a drug's passage through an organism. Whilst they possess no intrinsic efficacy they are designed to achieve desirable characteristics which can include improving a drug's permeability and or solubility, targeting a drug to a specific site or reducing a drug's toxicity. All of which are ideally achieved without compromising the efficacy of the drug. Whilst the majority of drug vehicle research is focused on the solubility and permeability issues of a drug, significant progress has been made on using vehicles for toxicity reduction. Achieving this can enable safer and more effective use of a potent drug against diseases such as cancer. From a molecular perspective, drugs activate or deactivate biochemical pathways through interactions with cellular macromolecules resulting in toxicity. For newly developed drugs such pathways are not always clearly understood but toxicity endpoints are still required as part of a drug's registration. An understanding of which vehicles could be used to ameliorate the unwanted toxicities of newly developed drugs would be highly desirable to the pharmaceutical industry. In this paper we demonstrate the use of different classifiers as a means to select vehicles best suited to avert a drug's toxic effects when no other information about a drug's characteristics is known. Through analysis of data acquired from the Developmental Therapeutics Program (DTP) we are able to establish a link between a drug's toxicity and vehicle used. We demonstrate that classification and selection of the appropriate vehicle can be made based on the similarity of drug choice

    Prediction of the effect of formulation on the toxicity of chemicals

    Get PDF
    Two approaches for the prediction of which of two vehicles will result in lower toxicity for anticancer agents are presented. Machine-learning models are developed using decision tree, random forest and partial least squares methodologies and statistical evidence is presented to demonstrate that they represent valid models. Separately, a clustering method is presented that allows the ordering of vehicles by the toxicity they show for chemically-related compounds

    A Review Of Inventory Control Theory

    No full text
    corecore