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Prediction of the effect of formulation on the 

toxicity of chemicals 

Pritesh Mistry a, Daniel Neagu a, Antonio Sanchez-Ruiz b, Paul R Trundle a, 
Jonathan D. Vessey b, John Paul Gosling c 

Two approaches for the prediction of which of two vehicles will result in lower toxicity for 

anticancer agents are presented.  Machine-learning models are developed using decision tree, 

random forest and partial least squares methodologies and statistical evidence is presented to 

demonstrate that they represent valid models.  Separately, a clustering method is presented that 

allows the ordering of vehicles by the toxicity they show for chemically-related compounds. 

 

Introduction 

When considering the formulation of a drug compound, many 

factors must be taken into account: maintaining the efficacy is 

one of the most important, but for some classes of drug 

compounds formulation to reduce toxicity becomes important 

too.  This is particularly true for cytotoxic compounds where 

several formulation strategies to reduce toxicity have been 

used.1–6 

Perhaps the simplest change in formulation is to change the 

dosing vehicle.  Investigations into the effect of vehicle on 

toxicity have been done in the past.  For example, differences in 

halocarbon toxicity using corn oil or an aqueous Emulphor 

vehicle have been investigated by several groups 7–11 with 

differences in toxicity due to the vehicle also being dependent 

on the type of toxicity – developmental, hepatotoxic and renal – 

as well as the dose. Similarly, aliphatic nitrile compounds have 

been investigated: Farooqui et al.12 showed that the toxicity of 

unsaturated aliphatic nitriles in Sprague-Dawley rats was 

reduced by using corn oil, safflower oil, mineral oil, olive oil or 

Tween-20 rather than saline.  In contrast, Ghanayem et al.13 

found that administration of methacrylonitrile in safflower oil 

was more toxic than in water.   

The prediction of the toxicity of chemicals using machine-

learning methods has been underway for many years14–17 and is 

sufficiently mature to support both freely available18–21 and 

commercial22–25 in silico models. Models are based on 

mechanistic rationale (expert systems) or statistical 

correlations, and both approaches have gained regulatory 

acceptance for prediction of mutagenicity of genotoxic 

impurities.26 

In an earlier paper27, we described the prediction of the effect of 

the dosing vehicle on toxicity; repurposed data from the United 

States National Institute of Health (NIH)28 was used to generate 

dose-survival curves for drugs administered using either saline 

or carboxymethylcellulose (CMC), and it was found that 

machine-learning (ML) methods could correctly classify 

compounds as having lower toxicity when administered with 

one of the two vehicles. 

In this paper, we consider how to demonstrate that the 

relationships that we found previously can be considered to be 

statistically significant and use the same approach to establish 

models for other pairs of vehicles. 

As data for even a single compound tested using two different 

vehicles, with other factors being kept the same, are rare, we 

have also investigated how clusters of compounds containing 

similar chemical groups show a difference in toxicity for 

vehicle pairs, allowing the building of sets of vehicles ordered 

by their relative toxicity when used as vehicles for compounds 

in the cluster. 

Background 

The dataset 

The dataset that was used is described in detail in our previous 

publication27.  The data have been collated over many years 

between the 1950’s and 1980’s by the National Cancer 

Institute’s Developmental Therapeutics program (DTP).28  The 

dataset was created to record the effect of drug compounds on 

animals that had been inoculated with a cancer cell line.  

Experiments were done using sets of, typically, 6 – 10 animals 

with variations in the dosing regime.  Toxicity was measured 

by considering the survival rate of the animals in the test on a 

particular day.  It is assumed that the death of the animals is due 

to the administered compound rather than the cancer cell line 

due to the short time span of the experiments, typically a few 

days. 

The dataset consists of >2M dose-toxicity data points; these are 

generated from >220k different compounds tested in ~50 

different vehicles.  There are experiments on ~40 different 
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species represented in the dataset with the drug compound 

administered by ten different routes. 

The dataset is free to download with explanatory instructions.28 

The approach to measuring differences in toxicity 

It was hoped that the dataset would contain records where the 

only difference between two experiments was the vehicle with 

which the compound was administered and that it would be 

possible to measure a difference in toxicity where this was the 

case.  The toxicity was measured by the number of surviving 

animals on a specified day.  The difficulty in measuring the 

difference in toxicity due to the vehicle was that relatively few 

experiments were conducted with all other factors being the 

same.  In order to make a comparison between experiments, 

therefore, a judgement was made about which factors must be 

the same and which might be allowed to vary; the following 

factors had to be the same for experiments to be considered 

comparable: administered compound, route of administration, 

host species, number of injections, injection interval, first 

injection day, the number of repetitions, the day on which the 

toxicity was assessed and any restart days.  Where these factors 

were the same, and the vehicle was also the same, the 

experiments could be combined into an aggregate for these 

conditions.  In most cases (18992 out of 26424 for compounds 

tested in either saline or CMC), there was only one set of dose-

survival experiments done in a compound-vehicle combination; 

in other cases, however, there were more.  This means that – for 

these aggregated data – there was both inter- and intra-lab 

variability, both of which are difficult to quantify. 

 
Figure 1: Dose-survival plot of six experiments involving single dose 

intraperitoneal injections of 4-di(2-chloroethyl)aminophenylalanine 

hydrochloride into B2D6F1 (BDF1) mice in CMC by the same screener. 

5-flurouracil is an anti-cancer agent which was tested many 

times in the dataset, usually administered in saline and at doses 

where a typical death rate was zero; this allows some measure 

of both intra- and inter-lab variability. In 1985 different sets of 

experimental conditions where more than one experiment was 

performed by the same screener, 1687 (85%) showed a median 

survival rate of 100%.  Aggregating these to eliminate 

differences from the screener gave 1576 different sets of 

experiments where more than one experiment was performed of 

which 1325 (84%) showed a median survival rate of 100%.  

This suggested that both the intra- and inter-lab variability rates 

were low and were quite similar.  Nevertheless, some 

variability was observed:  Intra-lab variability is demonstrated 

in Figure 1 where six experiments involving the nitrogen 

mustard para-di-(2-chlorethyl)-aminophenylalanine 

hydrochloride in CMC being administered by a single 

intraperitoneal injection by the same screener are shown.  Each 

experiment is compared to its own control; experiments each 

lasted a single day.  The dose range in Figure 1 is plotted 

logarithmically for purposes of illustration.  Two of the six 

experiments, numbers 5 and 6, show exactly the same results.  

Three of the six experiments demonstrate high toxicity in doses 

over ca. 2500 mg/kg/injection.  In the analysis in this paper, the 

mean value of survival at each dose would be included in the 

training data for the model. 

Inter-lab variability is illustrated in Figure 2 which shows the 

results from six experiments where mercaptopurine was 

administered to B2D6F1 (BDF1) mice, intraperitoneal, with a 

single daily injection repeated over nine days with the drug 

administered using saline as the vehicle; the dose range for each 

experiment varies.  For these experiments there is very little 

variation in survival shown over the dose range, all studies 

showing a survival of between 83 and 100%. 

 
Figure 2: Dose-survival plot of six experiments by different screeners where 

mercaptopurine was administered to B2D6F1 (BDF1) mice, intraperitoneal, with a 
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single daily injection repeated over nine days with the drug administered using 

saline as the vehicle. 

Figure 3 shows the studies from Figure 2 in the context of three 

additional studies of the same regime but using CMC as the 

vehicle.  For these experiments, administering the drug in saline 

generally results in a higher survival rate than administering the 

drug in CMC. 

Although generally there is a decrease in survival with 

increasing dose, Figure 1 and Figure 2 show that, not 

infrequently, a set of experiments shows a higher survival (i.e. 

less toxicity) at a higher dose than at a lower dose: this is 

shown, for instance in the experiments in Figure 1 for 

Experiment 1 and Experiment 2 and also in Figure 2 for 

Screener 2.  Such variations are commonly due to the death of a 

single animal from a study.  In this work, such variation is 

considered as ‘noise’. 

 
Figure 3: Variations in survival with dose for several experiments with 

mercaptopurine.  Each line represents an experiment carried out by different 

screeners.  Lines in shades of blue or grey represent six experiments where the 

mercaptopurine was administered in saline and lines in shades of red and orange 

represent three experiments where the mercaptopurine was administered in 

CMC. 

Where the toxicity of a compound has been tested by 

administering it using different vehicles and these other factors 

were equal, the toxicity profiles of the two experiments were 

compared using the area under the dose-survival curve. Where 

a difference in the areas under the dose-survival curve was 

found, the compound is considered to be less toxic when 

administered in one vehicle rather than the other.  

As described previously27, the difference in the area under the 

dose-survival curve (AUC) could be calculated in different 

ways to maximise the areas compared: the three ways 

considered were interpolation only; interpolation with 

extrapolation at the high dose end where possible and 

interpolation with extrapolation at both ends of the dose range 

where possible. 

 

 

 
Figure 4: The dose-survival curves for anthracene dicarbamimidothioate (ATPU) 

hydrochloride administered in saline and CMC.  The area under the saline curve 

is shaded in red and under the CMC curve in green.  For the model building, the 
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areas under the curve to be compared are shown by the blue vertical lines which 

change depending on whether the curves are interpolated only (top), 

extrapolated at high dose (middle) or extrapolated at both high and low dose 

(bottom). 

Interpolation is used where the lowest or highest doses used in 

two experiments differ; a point is added to the larger dose range 

to estimate the survival at the ‘missing’ dose thus defining a 

boundary for the calculation of the areas under the dose-

survival curves.  Extrapolation at high dose is possible where 

the survival has already fallen to zero and at low dose where 

survival at the lowest recorded dose is 100%. 

In Figure 4, the differences in how the area under the dose 

survival curve is illustrated for anthracene 

dicarbamimidothioate (ATPU) hydrochloride administered to 

B2D6F1 (BDF1) mice, intraperitoneal, with a single injection in 

either saline or CMC.  The area under the dose-survival curve 

for the drug administered in saline is shown in pale red, while 

that for the drug administered in CMC is shown in green; the 

limits of the area under the curve are shown as blue vertical 

lines.  In the top diagram, it can be seen that at the highest 

common dose, the survival rate in saline is 0% and so it is 

reasonable to extrapolate this survival rate to higher doses, up 

to Log (Dose /mg/kg/injection) of 4.8; this is shown in the 

second diagram.  Additionally, as the survival rate in saline at 

the lowest common dose is 100% it is reasonable to extrapolate 

to low dose and assume the survival rate will remain the same; 

this is shown in the third diagram.  (Note that in Figure 4, the 

dose axis is shown as Log (Dose/mg/kg/injection).  This is 

purely for purposes of the diagram.) 

Across all the drug-vehicle combinations, it was found that 

there was little difference in the number of compounds that 

showed a difference depending on the method of measuring the 

AUC, although when only using interpolation the median was 

smallest; this is shown in Figure 5.  

 

Figure 5: Boxplot of the variation in the number of compounds across all vehicle 

pairs considered to show a significant difference in the area under the dose-

survival curve with the interpolation or extrapolation of data points.  

In our previous paper we considered what would constitute a 

sufficiently significant difference in the area under the dose-

survival curve to merit a compound being considered to be less 

toxic in one vehicle than another; three levels of difference 

were considered: 30%, 40% and 60%.  Clearly the greater the 

difference needed to be considered significant, the fewer data 

would satisfy the condition.  This is shown in Figure 6 where 

increasing the difference in AUC needed to be considered 

significant reduces the number of compounds fulfilling this 

condition on going from 30% to 40% and 60%.  In this paper, 

we report the results from models built separately using all 

three differences in AUC. 

 
Figure 6: Boxplot of the variation in the number of compounds across all vehicle 

pairs considered to show a significant difference in the area under the dose-

survival curve with the size of the difference considered to be significant 

ML Model building approaches 

The idea of the ML model building was to see if it was possible 

to build models which could classify compounds as more toxic 

or less toxic when administered in one of two vehicles.  The 

classification of compounds in the training set would be made 

by the difference in the dose survival curve for the compound 

when administered in one vehicle over the other, other factors 

being the same. Frequently, it was found that where there were 

several different sets of experiments for a compound 

administered in two vehicles – for example a set of experiments 

where the host species was mouse, and a set of experiments 

where the host species was hamster – it might be the case that a 

reduction in toxicity was observed in a vehicle in one set of 

experiments, but not in the other.  Cases where compounds did 
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not show a consistent pattern across all the experiments for a 

vehicle pair fell into two types: (i) those which showed a 

combination of preference for one vehicle in some experiments 

but no preference in other experiments, which were termed 

equivocal and (ii) those which showed a preference for one 

vehicle in some experiments and for the other vehicle in other 

experiments, which were termed contradictory. The number of 

equivocal compounds was often comparable to those which 

showed a decided preference, whereas the number that were 

actually contradictory was very small. For the purposes of 

modelling, these equivocal and contradictory compounds 

together with those compounds which consistently showed no 

preference for either vehicle, were excluded; numbers of 

compounds modelled as well as the numbers excluded by being 

considered equivocal or contradictory are shown in Table 1 and 

Table 2. 

The descriptors for the model were global physico-chemical 

parameters such as Log P or molecular weight as well as other 

simple descriptors such as MACCS keys.   

In the previous paper, we reported models built using decision 

tree (DT) and random forest (RF) approaches; in this paper, we 

also report the results of models built using a Partial Least 

Squares (PLS) approach. 

PLS is commonly used when there are a large number of 

descriptors compared to the number of data points.  It is also a 

quantitative modelling approach, although refinements such as 

PLS-Discriminant Analysis (PLS-DA)29 have been developed 

for classification models.  In the models reported in this paper, 

a value of 0 or 1 was assigned to the preference of one vehicle 

over another – for instance 0 would represent less toxicity in 

CMC and 1 less toxicity in saline.  The PLS model gave a 

numerical value for the predicted vehicle with lower toxicity 

that was assigned to a category (0 or 1) based on whether it was 

greater than or less than 0.5.  The approach has been used 

successfully by others using PLS as a classification model.30 

In all three approaches, the models were built using a 10-fold 

cross-validation approach.  The folds were built ensuring that 

the class ratio in the training sets matched that of the dataset as 

a whole.  Possible descriptors were correlated with the observed 

classification of the compounds in the training set and the most 

strongly correlating were selected.  For the DT and RF models 

the number of descriptors selected was equal to one tenth of the 

number of compounds in the training set.  For the RF models, 

the random forest was rebuilt 100 times each with a different 

seed value, ensuring the RF models gave rise to different 

predictions.  For the PLS models the number of descriptors was 

varied in the range 5, 10, 20, 50; the maximum number of 

components allowed in the PLS model was one-tenth of the 

number of data points. 

In all cases, the datasets to be modelled had to consist of at least 

50 compounds. 

For each of the models, the metric that was used to measure 

performance was the balanced accuracy of the classification.  In 

practice it was found that the datasets being modelled were 

quite balanced with all biases being 2.2:1 or less. 

Statistical approach to validating the models  

When considering if the results from a model are significant, 

there are different tests that need to be passed: are the results 

from the model better than those that might be expected from 

building a model where there is no relationship between the 

feature being modelled and the descriptors used to build the 

model; is there a rationale for why the descriptors used in the 

model would be able to predict the activity modelled? 

In this paper, the models are subjected to a rigorous statistical 

analysis to demonstrate that they do indeed satisfy the criteria 

for being considered statistically significant. 

To this end, for each DT and PLS model where we wanted to 

confirm that the prediction could not have occurred by chance, 

300 models were built using a y-randomisation process31 (also 

known as target shuffling) in which the datasets from which the 

models were built had the preference for one vehicle over 

another randomised; descriptors were then selected by 

correlation with the randomly assigned preference and models 

built as previously.   

 
Figure 7: Histogram of the balanced accuracies of y-randomised PLS models for 

the classification of 123 compounds as having their toxicity reduced by either 

saline or CMC, in green.  The blue line represents a normal distribution having 

the same mean and standard deviation as the distribution of balanced accuracies 

from the y-randomised models.  The red line indicates the balanced accuracy of 

the model built with the real classification of the 123 compounds. 

For each DT and PLS model, the value of the balanced 

accuracy of the real model was compared with the distribution 

of balanced accuracies from the y-randomised models.  The 

balanced accuracy of the real model was considered to show a 

statistically significant difference to the distribution of the 

balanced accuracies of the y-randomised models if it were in or 

above the distribution’s 99th percentile, as calculated by the 

empirical cumulative distribution function.  Figure 7 shows a 

typical histogram of the distribution of balanced accuracies of 
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300 y-randomised PLS models for the classification of 123 

compounds as having decreased toxicity in either saline or 

CMC where the area under the dose-survival curve has been 

calculated by extrapolating in both the high and low dose 

regions and a difference in the AUC of 40% was needed in 

order that the toxicities in the two different vehicles was 

considered different.  Superimposed on the histogram is a 

normal distribution with the same mean and standard deviation 

as the distribution and the value of the balanced accuracy of the 

real model.  In this case the real model balanced accuracy is at 

the 99.7th percentile of the distribution. 

In the case of the RF models, 100 y-randomisations were done 

and each y-randomisation was modelled 100 times to be 

comparable with the set of real RF models.  The question of 

difference of the RF models from random thus involved 

comparing the distribution of balanced accuracies from the real 

model with each of 100 distributions from the y-randomised 

models.  When comparing two distributions, it is 

straightforward to show whether or not they may be drawn 

from the same distribution using a t-test, but we were interested 

in measuring how much of an improvement over random each 

experiment represented.  Two approaches to this were 

investigated. 

Firstly, quantifying the overlap, as shown in Figure 8, between 

the distribution of real balanced accuracies and each of the 

distributions of y-randomised balanced accuracies. An 

approximation to the overlap proportion for the two 

distributions was done by (1) partitioning the balanced accuracy 

and producing histographic density estimates over the partition 

for both of the distributions and (2) adding up the minimum 

density for each partition.  For completely separate distributions 

the overlap would be zero whilst for a situation where the real 

and random models produced identical distributions the overlap 

would be 100%. The distributions of the y-randomised models 

for 45 different combinations of vehicle pair and modelling 

conditions showed a fair amount of consistency, with median 

values between 55% and 64%; as a result, real models with a 

low performance (i.e. models which would fail the validation 

process) could still show a low overlap – so it was important to 

measure only those cases where the median of the distribution 

of balanced accuracies from the real models was greater than 

that of the y-randomised ones.  In this study, the value of the 

overlap is recorded but not used by itself as a discriminating 

value for the significance of the experiment.  The overlap 

coefficient remains popular for comparing two population 

distributions in many fields.32,33 .  

The second approach to measuring the improvement of the real 

model over the set of y-randomised models involved estimating 

the chance that a value taken at random from the distribution of 

balanced accuracies of the real models was greater than one 

taken from each of the distributions of balanced accuracies 

from the y-randomised models. As this is a Monte Carlo 

procedure, it is also trivial to calculate standard errors for the 

probability estimate. 

 For the collection of RF models to be considered as having 

outperformed the y-randomised models, the mean of the above 

probability value had to be greater than 80%.  This was an 

arbitrary cut-off, but there is little previous work to suggest an 

alternative. 

 

 
Figure 8: Histograms of balanced accuracy for real (blue) and one of the 100 y-

randomised (red) models of 107 compounds which show a difference in toxicity 

between HPC and saline with Tween-80, extrapolating the dose-survival curve in 

both the high- and low-dose regions and using a difference in the AUC of the 

dose-survival curve of 30% as showing a difference in toxicity.  The purple area 

indicates the overlap of the two distributions. 

ML Model building results 

DT and PLS models 

The results of the DT and PLS experiments are summarised in 

Table 1 for those combinations of vehicle pair, 

interpolation/extrapolation and AUC significance where the 

performance based on balanced accuracy was found to be at or 

above the 99th percentile of the distribution of balanced 

accuracies of the 300 corresponding models built from y-

randomised data as calculated by the empirical cumulative 

distribution function. 

As can be seen, both in quantity of models and in their overall 

performance the PLS modelling technique yields better results 

than the DT technique.  Four of the combinations are for 

compounds where a difference in toxicity is observed when 

using saline and CMC, though the best performing – in terms of 

both balanced accuracy and improvement over the y-

randomised models are the datasets of compounds where the 

comparison is between HPC and saline with Tween-80 

RF models 

There were 14 combinations of vehicle pair, 

interpolation/extrapolation and AUC significance, covering six 
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different vehicle pairs, where the RF models were considered as 

significantly outperforming random. 

In Figure 9 the distributions of probabilities that the real model 

outperforms a y-randomised model are shown for the 14 

combinations where the mean of the distribution was 80% or 

more.  Note that the medians of these distributions tend to be 

90% or more.  Eight of the combinations relate to the saline vs. 

CMC pair, i.e. out of the nine possible combinations of 

interpolation/extrapolation and AUC significance for this 

vehicle pair, eight are considered to allow the building of RF 

models which outperform random.  Of particular note are the 

results for the set of 92 compounds where, when the dose-

survival curve is extrapolated only at the high dose range and a 

threshold of 60% is used for the difference in the AUC of the 

dose-survival curve, 100 RF models were built and all but one 

had a probability of 100% that they outperformed a model built 

on y-randomised data (i.e. all but one had zero overlap between 

the distributions of balanced accuracies of the real and y-

randomised models). 

The results in Table 2 give more details of these sets of models 

and it can be seen that the mean of the overlap in balanced 

accuracy distribution is always <20%  

 

 

Table 1: Performance of nine models for four different vehicle pairs where the modelled dataset, N, was 50 compounds or more and the balanced accuracy was at or 

above the 99
th

 percentile of the distribution of balanced accuracies for 300 y-randomised models of the same data.  Interpolation/ Extrapolation is how the area 

under the dose-toxicity curve has been treated: Interpolation only means no extrapolation has taken place; high and high-low indicates that the data has been 

extrapolated at the high-dose or both the high- and low-dose ranges. AUC is the difference in areas under the dose-survival curve needed before it is considered 

significant. Equivocal is the number of compounds, not included in the modelling, which showed lower toxicity in one vehicle in some experiments but no difference 

in others. Contradictory is the number of compounds which showed lower toxicity for one vehicle in some experiments and for the other vehicle in other 

experiments. Percentile is the percentile of the balanced accuracy of the real model in the distribution of balanced accuracies for the y-randomised models. HPC is 

hydroxypropylcellulose (Klucel) 

Vehicle pair 
Interpolation/ 
extrapolation 
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B
alan

ced
 accu

racy
 

P
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Saline vs. CMC Extrapolate high-low 40 123 (69:54) 100 14 PLS 76% 99.7 

Saline vs. CMC Extrapolate high-low 40 123 (69:54) 100 14 DT 69% 100 

Saline vs. CMC Interpolation only 60 66 (43:23) 55 2 PLS 83% 99.0 

Saline vs. CMC Extrapolate high-low 60 79 (49:30) 76 4 PLS 85% 99.7 

Saline vs. HPC Extrapolate high-low 30 116 (69:47) 42 3 PLS 80% 99.3 

Saline vs. HPC Extrapolate high 30 131 (72:59) 44 3 DT 69% 99.7 

Saline vs. Saline with Tween-80 Extrapolate high-low 30 165 (92:73) 81 9 PLS 75% 99.0 

HPC vs. Saline with Tween-80 Extrapolate high-low 30 107 (56:51) 45 7 PLS 86% 99.7 

HPC vs. Saline with Tween-80 Extrapolate high 30 116 (59:57) 45 8 PLS 86% 100 

V
eh

icle p
air 

In
terp

o
latio

n
/ 

ex
trap

o
latio

n
 

A
U

C
/%

 

N
 

(less to
x

ic in
 first v

eh
icle: 

seco
n
d

 v
eh

icle) 

E
q
u

iv
o
cal 

C
o
n

trad
icto

ry
 

M
ean

 b
alan

ced
 accu

racy
/%

 

M
ean

 p
ro

b
ab

ility
 o

f real 

m
o

d
el b

ein
g

 b
etter th

an
 

ran
d

o
m

/%
 (S

D
) 

M
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D
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Saline vs. Water Extrapolate high 30 50 (29:21) 54 12 73 91 (20) 9 (16) 

Saline vs. Saline with Tween-80 Extrapolate high-low 40 119 (62:57) 53 6 63 85 (23) 16 (18) 

Saline vs. MC Interpolation only 30 60 (39:21) 19 3 69 81 (24) 17 (17) 

Saline vs. HPC Interpolation only 40 68 (36:32) 32 0 70 81 (28) 13 (16) 

Saline vs. CMC Interpolation only 60 66 (43:23) 55 2 71 94 (17) 8 (14) 

Saline vs. CMC Interpolation only 40 108 (68:40) 87 9 63 84 (27) 15 (16) 

Saline vs. CMC Interpolation only 30 144 (95:49) 106 18 62 90 (21) 12 (16) 

Saline vs. CMC Extrapolate high 60 92 (58:34) 70 6 79 100 (1) 0 (0) 

Saline vs. CMC Extrapolate high 40 130 (78:52) 99 15 63 91 (21) 13 (20) 

Saline vs. CMC Extrapolate high 30 164 (103:61) 112 26 61 89 (22) 13 (17) 

Saline vs. CMC Extrapolate high-low 60 79 (49:30) 76 4 73 98 (11) 3 (7) 

Saline vs. CMC Extrapolate high-low 40 123 (69:54) 100 14 66 94 (14) 10 (15) 
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Table 2: Summary of performance metrics and significance measures for 100 RF models of each of 14 combinations of vehicle pairs, interpolation/extrapolation and 

AUC significance. Explanation of Interpolation/extrapolation, AUC, N, equivocal and contradictory is given in Table 1. 

 
Figure 9: Boxplots of mean probability that a RF model outperforms a y-randomised model for 14 combinations of vehicle pair, interpolation/extrapolation and AUC 

significance.  Experiments with the same vehicle pair are shown in the same colour. 

Whilst considering that the models all show a performance 

which can be considered statistically significant, the actual 

balanced accuracies of the RF models are modest – in the range 

61 – 79% - so are less than the PLS models.  As with the DT 

and PLS models, the performances of the models for the 

compounds which show a difference in toxicity between saline 

and CMC are among the best.  This suggests that not only can 

this difference in toxicity due to the dosing vehicle be modelled 

but that the descriptors used in making the models capture well 

which compounds will show that difference. 

RF model analysis 

The performance of the models and the demonstration of their 

statistical significance suggests that they merit some 

investigation to see if the descriptors that are found to be 

significant can be rationalised. 

One of the main reasons for variation in formulation – 

including variation in administration vehicle – is ensuring the 

drug compound is held in solution or in an emulsion or gel and 

so prevented from precipitating.  For instance, cellulose-derived 

vehicles are thought to form a complex with the drug where the 

vehicle encapsulates the drug compound and therefore will 

change not only the solubility but the distribution of the drug 

compound. 

There are a few studies where the effect of vehicle on toxicity is 

understood, for example nitrogen mustards have been used as 

cytotoxic drugs and are known to have their toxicity (and anti-

tumour activity) reduced in acid media34,35 due to the 

protonated nitrogen being unable to form the reactive 

aziridinium ion.36   However, as far as we know, there is little 

systematic work rationalising the effect of vehicle on toxicity 

and it is hoped that this work might help in such a study. 

To that end a set of 100 RF models of the whole dataset (rather 

than cross-validation subsets) for classifying compounds as less 

toxic in either saline or CMC using the settings of the best 

performing model (interpolation/extrapolation set to 

‘extrapolate high’ and significance threshold set to 60%) was 

analysed to see which were the most impactful descriptors in 

the models. This study was done using RF models developed in 

R (which has the same RF algorithm as the KNIME Weka 

nodes used in the modelling reported above).  The results are 

shown in Table 3: Most impactful descriptors in RF models of 

toxicity of compounds in saline or CMC.Table 3. 

 

HPC vs. Saline with Tween-80 Interpolation only 40 62 (26:36) 32 5 71 88 (23) 7 (9) 

HPC vs. Saline with Tween-80 Extrapolate high-low 30 107 (56:51) 45 7 66 88 (23) 7 (12) 
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Descriptor Saline > CMC 
rank 

CMC > saline 
rank 

Indigo Number of heteroatoms  1 1 

RDKit Number of Lipinski 

Hydrogen bond acceptors 

2 4 

Indigo Number of aliphatic atoms 3  

CDK MACCS key 160: CH3 4 5 

CDK MACCS key: 137 

HETEROCYCLE 

5  

CDK MACCS key: 109 ACH2O  2 

MACCS key: 120 

HETEROCYCLIC ATOM > 1 

 3 

Table 3: Most impactful descriptors in RF models of toxicity of compounds 
in saline or CMC.  RDKit, Indigo and CDK MACCS are the sources of 

different descriptors. 

In this case there is a high degree of similarity between the 

descriptors influencing the prediction of lower toxicity in saline 

and lower toxicity in CMC.  In addition, it can be seen that the 

descriptors reflect substructural features rather than whole 

structure properties such as solubility, log P or molecular 

weight (all of which were available to the RF models).  The 

descriptors, three of which were also found to be significant in 

our earlier study,27 also suggest a relationship with the ability to 

form hydrogen bonds through the presence of a 

heteroatom/heterocycle or an explicit count of hydrogen bond 

acceptors.   Further analysis of the descriptors is beyond the 

scope of this work. 

In terms of application of the models, whilst the statistical 

analysis presented here shows that it is indeed possible to 

model the influence of the vehicle on toxicity, without a 

scientific rationale the models can only be used as a starting 

point for suggesting formulation strategies.  There is 

insufficient data to attempt refinements such as species specific 

formulations. 

Investigation into differences shown by clusters of 

compounds 

Among the datasets which contained fewer than 50 compounds, 

there were a few results of note.  In particular, the vehicle pairs 

of distilled water & alcohol (DWA) vs. CMC all the models 

correctly classified groups of 11 or 14 compounds entirely 

correctly.  The datasets that were classified correctly were all 

classified in the same way: compounds containing an aziridine 

ring were classified as less toxic in CMC than in DWA; all the 

compounds showing the reverse toxicity profile did not contain 

an aziridine ring (and, further, did not contain any other 

obvious common feature).  Of the compounds containing an 

aziridine ring, many of them were diaziridylphosphoramides 

(DAPs) with the substructure shown in Figure 10. 

This finding suggested that a clustering approach could be 

taken to investigate differences in toxicity for related 

compounds between sets of vehicles. 

Using the DAP structure shown in Figure 10 to search the 

complete dataset for compounds with this substructure, 22 

compounds were found for which there were data where the 

compound had been administered in both DWA and CMC.  

With such a small sample, the preference for CMC vs. DWA 

was examined with no threshold for the difference in the area 

under the dose-survival curve, but some rigor was introduced 

by considering that the area comparison had to be in the same 

direction however the interpolation or extrapolation were made 

and this was true irrespective of all other variable factors in the 

data, so the 22 compounds were represented by 28 sets of 

experiments where both CMC and DWA had been used.  The 

areas under the curve were considered using all three 

interpolation/extrapolation strategies and found that a core 

group of 17 compounds always showed less toxicity in CMC, 4 

always showed less toxicity in DWA and one always showed 

no preference. 

It appears therefore, that drug compounds with the substructure 

shown in Figure 10 might generally be formulated in CMC to 

reduce toxicity over a DWA vehicle. 

Other differences for compounds with the substructure in 

Figure 10 were investigated.  For the four vehicles saline, 

CMC, MC and DWA, 83 compounds were found with data for 

at least one pair.  In analysing the distribution of compounds 

between vehicle pairs, the approach taken was that a difference 

in toxicity was considered to be shown if the number of 

compounds with lower toxicity in one vehicle was greater than 

the number with lower toxicity in the other vehicle plus the 

number showing no difference in toxicity; where this was not 

the case, it was considered that the cluster of compounds 

showed no difference between the vehicle pair.  Thus, for the 

83 compounds containing the DAP structure, where the 

distribution between each pairs is shown in Table 4, and as 

reported above, it is considered that the cluster shows less 

toxicity in CMC compared to a vehicle of DWA by 17 to 4 with 

one showing no difference.  Similarly, the cluster shows less 

toxicity in CMC than in MC by 9 to 5, again with one 

compound showing no difference. 

The data in Table 4 show a self-consistent set of relationships 

in the order of the toxicity of the four vehicles with respect to 

compounds defined by the substructure shown in Figure 10, 

which can be expressed as saline > CMC > MC > DWA where 

‘>’ means ‘shows greater survival than’; the relationships are 

represented graphically in Figure 11.  These results could be 

considered to be a small rule base for choosing a vehicle for 

DAP drug compounds. It is important to be aware that these are 

trends for the cluster of 83 DAP compounds and not for 

individual compounds.  Indeed, only one compound of the 83, 

ThioTEPA, had data for all six pairs, and ThioTEPA itself did 

not follow all the rules.  Nevertheless, ThioTEPA is commonly 

administered in distilled water or saline.37,38 
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  Preference ratio shown by cluster (Less toxic: 
more toxic: no difference) 

Less 

toxic 
vehicle 

More 

toxic 
vehicle 

DAPs 

 

Aziridines 

 

NP(=[O,S])(N)(N) 

CMC DWA 17:4:1 26:17:3 14:2:1 

Saline DWA 22:11:0 30:18:3 11:4:0 

MC DWA 8:5:0 12:12:5 - 

CMC MC 9:5:1 19:12:3 - 

Saline CMC 18:7:9 39:18:17 13:7:9 

Saline MC 7:3:1 15:8:5  

Table 4: Differences in toxicity found for clusters of compounds containing 

the DAP structure shown in Figure 10, aziridines and phosphoramides.  
Figures in italics indicate that there is not considered to be a difference in 

toxicity shown by the two vehicles in the pair. 

Other clusters of compounds were investigated.  A related 

cluster of 149 compounds containing an aziridine ring showed 

similar relationships between the four vehicles, although as the 

number of compounds found to be less toxic when administered 

with MC rather than DWA was not greater than the number of 

compounds showing the reverse relationship and the number 

showing equality, the relationships between the four vehicles 

could be expressed as saline > CMC > MC = DWA, where, 

again,  ‘>’ means ‘shows greater survival than’ and ‘=’ means 

‘shows the same survival as’.  In contrast, for a cluster of 38 

phosphoramides defined with the SMARTS string 

NP(=[O,S])(N)(N) there were only enough data for the 

relationships between three of the vehicles (see Table 4) and the 

relationships were saline = CMC > DWA. 

P

O,S
N

N
R1

 
Figure 10: Diaziridylphosphoramide (DAP) derivatives which were seen to show a 

different toxicity profile in CMC than in distilled water & alcohol. 

 

 

Figure 11: Relationships between different toxicity profiles for compounds of the 

DAP shown in Figure 10.  Arrows go from the vehicle with the lower toxicity to 

the vehicle with the higher toxicity (i.e. ‘safer’ to ‘less safe’).  Labels on the 

arrows indicate the number of DAPs which are found for the vehicle pair to be 

less toxic: more toxic: no difference.  A similar arrangement of nodes can be 

drawn for the aziridines and a subset of the nodes can be drawn for the 

phosphoramides. 

The preference ratios for the three clusters represent fully 

ordered sets where all the relationships have sufficient – and 

non-contradictory – data.  For a cluster of 63 platinum 

containing compounds, data were found for five of the six 

different vehicle pairs from saline & Tween-80, HPC, water 

and saline.  For these compounds there was insufficient data for 

the saline & Tween-80 vs. water combination.  However, the 

five relationships which were found suggested the toxicity for 

platinum containing compounds varied saline > HPC = water > 

saline & Tween-80 and gave a full ordering of the four vehicles 

as can be seen in Figure 12. 

With a set of 54 compounds containing a sulphonic acid group, 

including compounds with an alkyl sulphonate counterion, with 

the vehicles sonified saline, saline, saline & Tween-80 and 

HPC, data were found again for five of the six possible 

relationships and were again able to form a fully order set.  In 

this case there was no preference shown between saline, saline 

& Tween-80, and HPC so the relationships can be summarised 

as sonified saline > saline = saline & Tween-80 = HPC as 

shown in Figure 13. 

The five clusters of compounds referred to in this section, 

together with the vehicle shown to be less toxic from each pair 

for which there are data are supplied as SD files in the 

supplementary data.  

Several other experiments on clusters defined by groups such as 

arsenic compounds, nitrogen mustards, quinones, aryl 

carboxylic acids or simply multi-component compounds were 

also performed but resulted only in equivalency of several 

different vehicles, or single vehicle pair relationships which 

could not be put in a wider context.  There were also cases 

where inconsistent relationships were recorded for example 

among a cluster of nitrogen mustards the inconsistent 

relationships HPC > saline & Tween-80, CMC=HPC, 

CMC=saline & Tween-80 were found.  Nevertheless, the self-

consistent sets of relationships found in the discussion above 

suggests the approach has some merit. 
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Figure 12: Relationships between different toxicity profiles for a cluster of 63 

platinum-containing compounds.  Arrows go from the vehicle with the lower 

toxicity to the vehicle with the higher toxicity (i.e. ‘safer’ to ‘less safe’).  Labels on 

the arrows indicate the number of compounds which are found for the vehicle 

pair to be less toxic: more toxic: no difference.  Where two or more vehicles are 

not considered to show a difference in toxicity, a double headed arrow is used 

and the label indicates less toxic on the left: less toxic on the right: no difference.  

 
Figure 13: Relationships between different toxicity profiles for a cluster of 54 

sulphonic acids.  Arrows go from the vehicle with the lower toxicity to the vehicle 

with the higher toxicity (i.e. ‘safer’ to ‘less safe’).  Labels on the arrows indicate 

the number of compounds which are found for the vehicle pair to be less toxic: 

more toxic: no difference. Where two or more vehicles are not considered to 

show a difference in toxicity, a double headed arrow is used and the label 

indicates less toxic on the left: less toxic on the right: no difference. 

Experimental work 

The dataset was provided by the National Institute of Health’s 

Developmental Therapeutics Program28 and was curated as 

described previously27 to give a dataset of 2297845 records 

relating to 221656 drug compounds.  52 different vehicles were 

considered giving 1326 unique vehicle pairs. 

All modelling and clustering were done with KNIME version 

2.12.2.  In this environment, descriptors were obtained from the 

RDKit and Indigo descriptor nodes and CDK MACCS 

fingerprints node; PLS models were built with the Weka 3.6 

nodes, RF models were built with Weka 3.7 nodes and DT 

models were built with the KNIME base nodes. Statistical 

analyses were performed using R nodes running version 3.0.3 

of R sub versioned 201508240951.  Chemical substructure 

searches were performed using the RD Kit Substructure filter. 

KNIME workflows representative of the experiments reported 

in this paper are available as supplementary data. 

Conclusions 

We have shown that models can be made for classifying which 

of a pair of vehicles for a drug compound can result in lower 

toxicity. 

We have demonstrated that the approach works for several 

pairs of vehicles, and that a statistically rigorous evaluation of 

the results demonstrates that they have not come about by mere 

chance.  We find that models built using PLS techniques give 

better predictive performance than those built with RF or DT 

methods. 

We have also presented a method of ordering the relative 

toxicities shown by vehicle pairs for a series of clusters which 

generally lead to self-consistent ordered sets of vehicles.   
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