1,609 research outputs found

    A malthusian model for all seasons

    Get PDF
    An issue often discussed in relation to agricultural development is the effect on agricultural labour productivity of more intensive land-use. Introducing aspects of seasonality into a stylized Malthusian model, we unify two diverging views by showing that labour productivity may go up or down with agricultural intensification, depending on whether technological progress emerges in relation to cultivation or harvesting activities. Our result rests on evidence reported by Boserup (1965) and others, which suggests that harvest seasons in traditional agriculture are characterized by severe labour shortage.Agricultural Intensification, Boserup, Labour Surplus, Malthus, Seasonality

    Comparison of dimethyl sulfoxide treated highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices

    Get PDF
    Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices

    Eighth Annual Agricultural Marketing Conference Theme "Exporting Ohio's Agricultural Production to a Hungry World"

    Get PDF

    Self-similar correlation function in brain resting-state fMRI

    Full text link
    Adaptive behavior, cognition and emotion are the result of a bewildering variety of brain spatiotemporal activity patterns. An important problem in neuroscience is to understand the mechanism by which the human brain's 100 billion neurons and 100 trillion synapses manage to produce this large repertoire of cortical configurations in a flexible manner. In addition, it is recognized that temporal correlations across such configurations cannot be arbitrary, but they need to meet two conflicting demands: while diverse cortical areas should remain functionally segregated from each other, they must still perform as a collective, i.e., they are functionally integrated. Here, we investigate these large-scale dynamical properties by inspecting the character of the spatiotemporal correlations of brain resting-state activity. In physical systems, these correlations in space and time are captured by measuring the correlation coefficient between a signal recorded at two different points in space at two different times. We show that this two-point correlation function extracted from resting-state fMRI data exhibits self-similarity in space and time. In space, self-similarity is revealed by considering three successive spatial coarse-graining steps while in time it is revealed by the 1/f frequency behavior of the power spectrum. The uncovered dynamical self-similarity implies that the brain is spontaneously at a continuously changing (in space and time) intermediate state between two extremes, one of excessive cortical integration and the other of complete segregation. This dynamical property may be seen as an important marker of brain well-being both in health and disease.Comment: 14 pages 13 figures; published online before print September 2

    Genetic variation in male sexual behaviour in a population of white-footed mice in relation to photoperiod

    Get PDF
    In natural populations, genetic variation in seasonal male sexual behaviour could affect behavioural ecology and evolution. In a wild-source population of white-footed mice, Peromyscus leucopus, from Virginia, U.S.A., males experiencing short photoperiod show high levels of genetic variation in reproductive organ mass and neuroendocrine traits related to fertility. We tested whether males from two divergent selection lines, one that strongly suppresses fertility under short photoperiod (responder) and one that weakly suppresses fertility under short photoperiod (nonresponder), also differ in photoperiod-dependent sexual behaviour and responses to female olfactory cues. Under short, but not long, photoperiod, there were significant differences between responder and nonresponder males in sexual behaviour and likelihood of inseminating a female. Males that were severely oligospermic or azoospermic under short photoperiod failed to display sexual behaviour in response to an ovariectomized and hormonally primed receptive female. However, on the day following testing, females were positive for spermatozoa only when paired with a male having a sperm count in the normal range for males under long photoperiod. Males from the nonresponder line showed accelerated reproductive development under short photoperiod in response to urine-soiled bedding from females, but males from the responder line did not. The results indicate genetic variation in sexual behaviour that is expressed under short, but not long, photoperiod, and indicate a potential link between heritable neuroendocrine variation and male sexual behaviour. In winter in a natural population, this heritable behavioural variation could affect fitness, seasonal life history trade-offs and population growth. (C) 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved

    Variation in the strength of selected codon usage bias among bacteria

    Get PDF
    Among bacteria, many species have synonymous codon usage patterns that have been influenced by natural selection for those codons that are translated more accurately and/or efficiently. However, in other species selection appears to have been ineffective. Here, we introduce a population genetics-based model for quantifying the extent to which selection has been effective. The approach is applied to 80 phylogenetically diverse bacterial species for which whole genome sequences are available. The strength of selected codon usage bias, S, is found to vary substantially among species; in 30% of the genomes examined, there was no significant evidence that selection had been effective. Values of S are highly positively correlated with both the number of rRNA operons and the number of tRNA genes. These results are consistent with the hypothesis that species exposed to selection for rapid growth have more rRNA operons, more tRNA genes and more strongly selected codon usage bias. For example, Clostridium perfringens, the species with the highest value of S, can have a generation time as short as 7 min

    Electron exchange coupling in a naturally occurring tetramangano cluster in the mineral helvite, (Mn4S)(SiBeO4)3

    Full text link
    The mineral helvite, (Mn4S)(BeSiO4)3, contains discrete tetrahedral Mn4S+6 clusters in which the S-2 is tetrahedrally coordinated and each Mn(II) is in a distorted tetrahedron of one S-2 and three oxygens; the cluster is situated within an encompassing lattice of SiO4-4 and BeO4-6 tetrahedra. Mn4S+6 centers provide an interesting model for comparison to the polynuclear manganese center that is associated with photosynthetic water oxidation. Magnetic susceptibility data between 77 and 298 K have been measured for a natural helvite sample containing principally Mn4S+6 centers but with significant contamination from Mn3FeS+6 and Mn3CaS+6. The data exhibited Curie-Weiss behavior with [mu]eff = 5.969 B.M. and [theta] = 178.3 K. An analysis of the magnetic susceptibility, based on Van Vleck's formalism, demonstrated the presence of antiferromagnetic coupling, with a coupling constant J = -5.83 cm-1. Mossbauer spectra of Mn3FeS centers in helvite and of Fe4S centers in the related mineral danalite have also been recorded. Isomer shifts show little temperature dependence and lie in the range 1.23-1.43 mm/sec.. This range is typical of tetrahedrally coordinated Fe(II) in several ionic crystals but is significantly above that of Fe(II) in ferredoxins and below that in the [quinone-Fe(II)-quinone] complex of the photosynthetic bacterium,Rhodopseudomonas sphaeroides. Quadrupole splittings are highly temperature dependent, ranging from 2.4 mm/sec at 4.2 K to less than 0.5 mm/sec at 248 K.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25645/1/0000197.pd

    P2x7 deficiency suppresses development of experimental autoimmune encephalomyelitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purinergic receptor P2x7 is expressed on myeloid cells as well as on CNS glial cells, and P2x7 activation has been shown to increase both glial and T-cell activation. These properties suggest a role in the development of autoimmune disease including multiple sclerosis.</p> <p>Methods</p> <p>The animal model of MS, experimental autoimmune encephalomyelitis (EAE) using myelin oligodendrocyte glycoprotein (MOG) peptide residues 35–55 was induced in wildtype C57BL6 mice and in P2x7 deficient mice ('P2x7 mice') that were backcrossed to C57BL6 mice. Disease progression was monitored by appearance of clinical signs, immunocytochemical staining to assess brain inflammation and neuronal damage, and by measurement of Tcell cytokine production.</p> <p>Results</p> <p>The incidence of EAE disease in P2x7 mice was reduced 4-fold compared to the wildtype mice; however the P2x7 mice that became ill had similar days of onset and clinical scores as the wildtype mice. Splenic T-cells isolated from P2x7 null mice produced greater IFNγ and IL-17 (from 3 to 12 fold greater levels) than wildtype cells, however cytokine production from P2x7 derived cells was not increased by a selective P2x7 agonist as was cytokine production from wildtype cells. Although infiltrating cells were detected in brains of both the P2x7 and wildtype mice, astroglial activation and axonal damage was reduced versus wildtype mice, and the distribution of astroglial activation was markedly distinct in the two strains. In contrast, microglial activation was similar in the two strains.</p> <p>Conclusion</p> <p>P2x7 deficiency resulted in compensatory changes leading to increased T-cell cytokine production, and activated T-cells were detected in the brains of P2x7 null mice with no clinical signs. However, the greatly reduced incidence of disease suggests that an initiating event is absent in these mice, and points to a role for astroglial P2x7 in development of EAE disease.</p
    • …
    corecore