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In natural populations, genetic variation in seasonal male sexual behaviour could affect behavioural
ecology and evolution. In a wild-source population of white-footed mice, Peromyscus leucopus, from
Virginia, U.S.A., males experiencing short photoperiod show high levels of genetic variation in repro-
ductive organ mass and neuroendocrine traits related to fertility. We tested whether males from two
divergent selection lines, one that strongly suppresses fertility under short photoperiod (responder) and
one that weakly suppresses fertility under short photoperiod (nonresponder), also differ in photoperiod-
dependent sexual behaviour and responses to female olfactory cues. Under short, but not long, photo-
period, there were significant differences between responder and nonresponder males in sexual
behaviour and likelihood of inseminating a female. Males that were severely oligospermic or azoo-
spermic under short photoperiod failed to display sexual behaviour in response to an ovariectomized and
hormonally primed receptive female. However, on the day following testing, females were positive for
spermatozoa only when paired with a male having a sperm count in the normal range for males under
long photoperiod. Males from the nonresponder line showed accelerated reproductive development
under short photoperiod in response to urine-soiled bedding from females, but males from the
responder line did not. The results indicate genetic variation in sexual behaviour that is expressed under
short, but not long, photoperiod, and indicate a potential link between heritable neuroendocrine vari-
ation and male sexual behaviour. In winter in a natural population, this heritable behavioural variation
could affect fitness, seasonal life history trade-offs and population growth.
© 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Natural populations contain important interindividual variation
in reproductive traits (Bronson, 1989; Williams, 2008), underlying
physiological traits (Bronson, 1989; Bronson & Heideman, 1994;
Heideman & Pittman, 2009; Prendergast, Kriegsfeld, & Nelson,
2001) and related reproductive behavioural traits (Rhen & Crews,
2002). To understand variation in reproductive and life history
traits, it is necessary to relate genetic variation among individuals
to phenotypic variation in structure, physiology and behaviour

(Williams, 2008). Genetic variation may also exist in phenotypic
plasticity, the ability to alter phenotype in response to the envi-
ronment (Lessells, 2008). Traits that are known to have genetic
variation and phenotypic plasticity in natural populations provide
opportunities to test relationships among physiological traits, be-
haviours and phenotypes (Feder, Bennett, & Huey, 2000).

In many temperate-zone rodents, reproduction is a phenotypi-
cally plastic trait: reproduction occurs in spring, summer and/or
autumn, but reproduction and sexual behaviour are suppressed in
the short photoperiods of winter (Bronson, 1989; Campbell,
Finkelstein, & Turek, 1978; Miernicki, Pospichal, & Powers, 1990;
Morin & Zucker, 1978; Park et al., 2004; Powers et al., 1989).
When descendants of wild-caught individuals are tested in the
laboratory, short photoperiod is the major environmental treat-
ment that causes reproductive suppression (Bronson & Heideman,
1994). In many populations, some individuals show complete
phenotypic plasticity by fully suppressing gametogenesis and
reproduction in winter, some are intermediate, and others lack
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phenotypic plasticity, showing no response to short photoperiod
(Bronson, 1989; Bronson & Heideman, 1994; Prendergast et al.,
2001). The variation in response to short photoperiod has a ge-
netic basis (Desjardins, Bronson, & Blank, 1986; Heideman &
Pittman, 2009; Prendergast et al., 2001), including genetic varia-
tion in gonadal development and in physiological traits in the
reproductive neurons and hormones of the hypothal-
amicepituitaryegonadal (HPG) axis (Blank & Ruf, 1992; Heideman
& Pittman, 2009; Mintz, Lavenburg, & Blank, 2007; Prendergast
et al., 2001). An important question is whether there is genetic
variation in behaviour that is related to variation in the develop-
ment of reproductive organs and availability of gametes, and
whether behavioural and morphological variation might cause
differences in the number of offspring and size of litters.

In this study, we tested for heritable differences in sexual
behaviour and phenotypic plasticity of reproduction using two
selection lines derived from a wild population (Heideman, Bruno,
Singley, & Smedley, 1999; Heideman & Pittman, 2009). One line
has been artificially selected for small immature testes, ovaries and/
or uteri under short photoperiod (8:16 h light:dark cycle), and is
defined as responder to short photoperiod (‘responder’). A second
line has been artificially selected for large reproductive organ mass
under short photoperiod, or ‘nonresponder’ (see Methods for se-
lection criteria). After three generations of selection, responder
mice had significantly smaller reproductive organs than nonre-
sponder mice at age 70 days under short photoperiod (Heideman
et al., 1999). With continued selection, approximately 90% of the
responder individuals were prepubertal or peripubertal under
short photoperiod at age 70 days, as indicated by gonadal size. At
the same age, approximately 80% of nonresponder mice had large
gonads under short photoperiod, and gonads were similar in size to
mice raised under long photoperiod (LD 16:8 h) in a control line
(Heideman & Pittman, 2009). Both selection lines undergo repro-
ductive suppression under short relative to long photoperiod
(Heideman & Pittman, 2009), but only in the responder line does
reproductive suppression under short photoperiod commonly
result in low levels of spermatozoa: azoospermia or oligospermia
(Broussard et al., 2009). These selection lines have been shown to
differ heritably in reproductive traits (reproductive organ size,
number of immunoreactive GnRH neurons, levels of luteinizing
hormone: Avigdor, Sullivan, & Heideman, 2005; Heideman et al.,
1999, 2010) as well as some, but not all, nonreproductive traits
that may affect fertility (ad libitum food intake, metabolic rate,
physical activity, amount of iodomelatonin binding in the brain:
Heideman & Pittman, 2009; Heideman et al., 2010; Kaseloo,
Crowell, & Heideman, 2014; Kaseloo, Crowell, Jones, & Heideman,
2012; White et al., 2014).

We tested the hypothesis (H1) that there is variation in male
sexual behaviour that is expressed under short but not long
photoperiod. We also tested whether variation in male sexual
behaviour under short photoperiod is related to genetic variation in
sperm count or mass of reproductive organs. We predicted that
under short photoperiod, measures of male sexual behaviour
would be lower in the responder line than in the nonresponder line,
but that the lines would not differ under long photoperiod. We also
predicted that measures of sexual behaviour would be positively
correlated with sperm count and mass of reproductive organs. This
is particularly important because short photoperiod alone may not
suppress male sexual behaviour. In many populations, males can be
moderately to severely oligospermic in winter, but not azoosper-
mic; if these individuals can display sexual behaviour and mate,
they may be capable of insemination and fertilization. In Siberian
hamsters, Phodopus sungorus, under short photoperiod, 50% of
males with regressed testes maintained sexual behaviour to ejac-
ulation (Park et al., 2004). In our study, therefore, an alternative

hypothesis (H2) is that reproductive behaviour under short
photoperiod is independent of selection line, testis size or sperm
count. Two predictions are possible under H2. First, all males may
reduce sexual behaviour under short photoperiod, because sexual
behaviour may be more strongly inhibited by short photoperiod
than by low availability of spermatozoa. Second, azoospermic
males under short photoperiod may reduce or eliminate sexual
behaviour, while oligospermic males may have sufficient activation
of the reproductive axis to exhibit normal sexual behaviour.

In a second experiment, we tested for heritable variation in
phenotypic plasticity of reproductive maturation in the presence of
olfactory cues from mature females. It is possible that exposure to
olfactory cues may signal potential reproductive opportunities that
accelerate the reproductive development of males under short
photoperiod. Daily exposure to these cues accelerates male matu-
ration in some mammals (Rissman, Taymans, & Wayne, 1990;
Vandenbergh, 1971; Whitsett & Lawton, 1982) but not all (Bediz
& Whitsett, 1979). Exposure to female olfactory cues has been
shown to accelerate puberty in male white-footed mice, Peromy-
scus leucopus, under long photoperiod (Terman, 1984); here we ask
whether a similar acceleration would occur under short photope-
riod. One hypothesis (H1), based on results from Terman (1984) and
Whitsett and Lawton (1982) is that all young males from both
responder and nonresponder lines will accelerate reproductive
maturation under short photoperiod when presented daily with
soiled bedding from the cages of mature females. An alternative
hypothesis (H2) is that there is genetic variation in this response,
such that only nonresponder males will accelerate reproductive
development under short photoperiod.

Heritable differences in male sexual behaviour and reproductive
organs could cause differences in litter size between selection lines.
Therefore, in a third experiment, we tested for variation in litter
size between our nonresponder and responder selection lines.
Because mice in the responder line are strongly reproductively
inhibited by short photoperiod, all litters were conceived under
long photoperiod. We tested two conditions for each line: litters
were retained under long photoperiod after birth (mimicking late
springeearly summer births and inducing a phenotype typical
under long photoperiod), or litters were transferred at birth to short
photoperiod (mimicking late summereearly autumn births in
which mice experience shortening photoperiod, and inducing a
phenotype typical under short photoperiod). Under this hypothe-
sis, enhanced male sexual behaviour or higher sperm counts in the
nonresponder line might result in fertilization of a higher propor-
tion of ova in the nonresponder line relative to the responder line.
Changes in the number of pups per litter might also affect the mass
of pups; therefore, we also compared the lines for total mass of
litters and the average mass of pups in a litter.

Finally, these experiments did not use replicated selection lines,
and so it is not possible to distinguish whether differences between
selection lines might be due to genetic drift as opposed to selection.
The objective here was not to test for causes of differences between
selection lines, but rather to test for ecologically relevant genetic
variation that might be present in a natural population.

METHODS

Selection Lines of Peromyscus leucopus

Detailed descriptions of the selection lines used in this study
are available elsewhere (Broussard et al., 2009; Heideman et al.,
1999; Heideman & Pittman, 2009); here we provide a brief
description. Two artificial selection lines and an unselected control
line were established in 1995 from 208 offspring of 48 wild-caught
mice. These 208 offspring were conceived under long photoperiod
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and transferred at birth to short photoperiod. At an age of 67e73
days, body mass and reproductive development was recorded.
Mice were selected at random from these offspring to establish the
unselected control line. From the remaining mice, a line artificially
selected to be reproductively suppressed under short photoperiod
(responder line) was formed using males that were azoospermic
or severely oligospermic (length �width of one testis <24 mm2)
and females with immature ovaries (lacking visible follicles or
corpora lutea and �2 mm in greatest length) and small uteri
(<0.5 mm diameter). Similarly, males with large testes (length -
�width of one testis >32 mm2) and females with mature ovaries
(with visible follicles or corpora lutea and �2 mm in greatest
length) and large uteri (>1 mm diameter) were selected to
establish a selection line that had little or no reproductive
response to short photoperiod (nonresponder line). The control
line was maintained as an unselected outbred line, while artificial
selection in the responder and nonresponder lines was continued
for 10 subsequent generations. When raised under long photo-
period, males and females reach adult body mass at age 70 days,
but become sexually mature at age 46e60 days (Broussard et al.,
2009). In contrast, when transferred to short photoperiod within
3 days of birth and raised under short photoperiod, males that are
affected reproductively by short photoperiod do not begin to
become photorefractory until about 18e20 weeks of age
(Broussard et al., 2009). As adults, breeders are commonly fertile
for 2 years or longer.

Within three generations of founding the lines, most individuals
in the nonresponder line matured by age 70 days when raised
under short photoperiod, while those in responder line did not
(Heideman et al., 1999; Heideman& Pittman, 2009). The lines differ
inmass of the testes and seminal vesicles under both long and short
photoperiod (nonresponder > responder under either photope-
riod) (Avigdor et al., 2005; Heideman & Pittman, 2009). Photope-
riod affects reproduction in both selection lines: in both the
nonresponder and responder lines, the mass of testes and seminal
vesicles is smaller under short photoperiod relative to long
photoperiod (Avigdor et al., 2005; Heideman & Pittman, 2009).
Testes of males in the nonresponder line under short photoperiod
are still within the normal range for long photoperiod for the
founder population or the control line (Heideman et al., 1999).
Additional information on the two selection lines and control line
has been published elsewhere (Broussard et al., 2009; Heideman,
2004; Smale, Heideman, & French, 2005).

Ethical Note

Surgeries and handling procedures were developed from the
literature on assessing sexual behaviour in small rodents, especially
in nondomesticated rodents; this included consultation with col-
leagues and our consulting veterinarian. We adapted procedures to
minimize stress and discomfort in our colony (e.g. providing cotton
nesting material, various rodent chews, tubing for hiding), partic-
ularly during pilot tests. We used detailed follow-up observations
(e.g. physical examination, regular observation for huddling or
lethargy, monitoring body mass for evidence of decreased food
intake, monitoring pelage smoothness as an indicator of normal
grooming, and observing tail vertebral prominence or pulling up a
flank skin fold as an indicator of possible dehydration) to consider
changes to surgeries, hormonal treatments, vaginal lavage and
pairing procedures for behaviour tests. We made modifications if
observations indicated potential problems, including potential for
injury or preventable stress. During surgeries, depth of anaesthesia
was assessed by a rapid pinch of the skin on the flank with forceps,
using very lightweight forceps to prevent any risk of tissue damage.
We adjusted anaesthesia by monitoring breathing rate, with a

target at or slightly below one breath per second. We altered the
frequency of hormonal priming of females after our assessments
detected uterine infections in three females. After modification, the
problem did not recur. We monitored for stress by watching for
unusual behaviours (e.g. huddling in cage corners or aggression).
Prior to finalizing the procedure to record behavioural observa-
tions, we observed newly paired animals for progressively longer
periods to monitor the potential for stress or injury due to
aggression between paired individuals.

Approval of animal subjects for this study was provided under
protocols IACUC-9812, IACUC 0219 and IACUC 0429 from the
Institutional Animal Care and Use Committee of the College of
William and Mary.

Experiment 1: Variability and Phenotypic Plasticity in Sexual
Behaviour and Reproductive Organs

Litters from responder and nonresponder lines (generations F7
to F10) were born under long photoperiod (lights off 1700 hours) at
an ambient temperature of 22 ± 3 �C. Approximately 2 days after
birth, the male was removed and the female and pups were either
left under long photoperiod or transferred to short photoperiod
(lights off 2100 hours) with constant temperature (22 ± 3 �C). At
weaning (23 days of age), male mice were separated and housed
individually in polyethylene cages (27 � 16 � 13 cm) and provided
with food (LM-485, Harlan Teklad, Madison, WI, U.S.A.) and water
ad libitum. Sample sizes were 17 nonresponder and 16 responder
under long photoperiod, and 13 nonresponder and 12 responder
under short photoperiod. At age 8e12 weeks (after normal age of
maturity under long photoperiod, but before refractoriness to
photoperiod), reproductive status was assessed by lightly anaes-
thetizing with isoflurane (30% anaesthesia in an induction chamber
and 2% maintenance with a precision vaporizer; Abbott Labora-
tories, Chicago, IL, U.S.A.; duration of anaesthesia was approxi-
mately 3e5 min) and using callipers to measure the length and
width of the right testis through the scrotum (±0.1 mm). Mea-
surements were taken by one individual (P.D.H.) who was blind to
both line and treatment. The length and width of the testis was
used to estimate testis size (Broussard et al., 2009). The right ear of
each male was tagged (Size 1 Monel, National Band and Tag Co.,
Newport, KY, U.S.A.) as a permanent identification marker. The
presence of the tag on the right ear identified the male during
behavioural observations.

Sexually mature female mice (age >50 days but <1 year; N ¼ 32)
used as stimulus females in behavioural testing were housed under
long photoperiod and selected at random from all three lines
(responder, nonresponder, unselected control). Adult females from
the three lines under long photoperiod appeared to be similarly
receptive to mating during pilot testing, and the use of all three
lines minimized the potential for bias due to behavioural differ-
ences among females in the three lines. Stimulus females were
ovariectomized by sterile surgery under isoflurane anaesthesia
(Abbott Laboratories, North Chicago, IL; isoflurane in an induction
chamber at 30% followed by 2% maintenance; duration of surgery
and anaesthesia was approximately 10e15 min). Mice were treated
with an antibiotic (Ampicillin at 10 mg/kg) and an analgesic/anti-
inflammatory agent (Flunixamine 20 mg/kg) and were given sup-
plemental heat and monitored until recovery.

Prior to each behavioural test, stimulus females were primed
with exogenous hormones to induce oestrus using methods
established elsewhere (Dewsbury, 1975). Briefly, an intramuscular
injection (i.m.) of 0.06 mg of oestradiol benzoate in peanut oil
vehicle was given 72 h before testing, followed 6 h before testing by
0.60 mg of progesterone in peanut oil vehicle (0.05 ml, i.m.). This
protocol produced reproductive behaviours identical to those seen
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in naturally occurring oestrus in nonovariectomized mice
(Dewsbury, 1975).

During pilot experiments, sexually naïve adult males under long
photoperiod exhibited few sexual behaviours during the first night
of exposure to a hormonally primed, receptive female. However, on
the second exposure to a novel female on the following night
almost all males displayed sexual behaviours. For this reason,
testing for sexual behaviour included an initial night for experience
(‘experience night’) when datawere not collected, directly followed
by a second night (‘test night’) in which males were paired with a
novel female and behaviours were recorded for analysis. Males that
failed to display sexual behaviour during the test night (N ¼ 20 of
58 males) were given a second test night (‘supplemental night’)
3e5 days later. In the closely related deer mouse, Peromyscus
maniculatus, a single day was sufficient for 80% of males to recover
the ability for sexual behaviour to ejaculation, but 20% of males
needed more time for recovery (Dewsbury, 1983).

The range of ages for behavioural testing of males was 10e18
weeks. The average age at testing was 13 weeks (91 days), with no
significant differences in age at testing among treatment groups.
The lower age limit was chosen because the typical age of maturity
of this species under long photoperiod is 8 weeks; the upper age
limit was chosen because males require more than 18 weeks of
photoperiod treatment to begin refractoriness to the effects of
photoperiod (Broussard et al., 2009).

Behavioural testing
We tested males from the two selection lines (nonresponder

and responder) under short photoperiod (short-day treatment) and
long photoperiod (control treatment). Pairings of males with hor-
monally primed females were recorded for 8 h (2100e0500 hours)
during the dark phase in dim red light (25 W bulb) using a 1/3-inch
CCD black and white camera (Lorexpro, CVC6981P) and a four-head
VCR (Panasonic PV-VS4821). The 8 h recording period included the
entire dark phase for control mice and themiddle 8 h portion of the
dark phase for short-day mice. In pilot tests, mature males dis-
played the most reproductive behaviour in the middle of the dark
period, which is consistent with observations by Dewsbury (1975).
We recorded the number of mount attempts, number of in-
tromissions, number of ejaculations, latency to first mount attempt,
latency to first intromission and latency to first ejaculation
following Dewsbury (1975). We added an additional measure, the
number of pursuits, in which the male closely pursued the female
for a distance of at least 25 cm.

On the test night, onemale and one stimulus femalewere placed
in separate halves of a 10-gallon glass aquarium (51 � 25 and 30 cm
high) separated by a wooden divider, following a protocol adapted
from Burns-Cusato et al. (2004). Each mouse had access to food,
water and pine shavings with cotton bedding material. Following a
period of habituation (3.5e7 h), the divider was removed and
behavioural recording began immediately (2100 hours). Mice were
separated on the following day. After separation, the observation
chamber was washed with hot soapy water and wiped with 70%
ethanol. Because wooden components (divider and water bottle
stand) can retain odours, residual scent was minimized by scrub-
bing between trials with soap and hot water.

On the day following testing, females were checked by vaginal
lavage with saline for the presence or absence of motile sperma-
tozoa. A clean pipette tip was used for gentle lavage of the vagina
with 200 ml of saline, following which the rinse was scanned under
a microscope for the presence of spermatozoa. The presence of
spermatozoa provided an independent indicator of sexual behav-
iour to ejaculation. This independent measure was valuable
because it was difficult to distinguish between behavioural ejacu-
lation and intromission without ejaculation.

Four individual observers were given a training period that
included tests for consistency of observations. Videotapes were
prescanned by a single individual to identify the initiation of
reproductive behaviour. Following observer training, the number
and timing of sexual behaviours were recorded by one observer
blind to both line and photoperiod for the 120 min following
initiation of sexual behaviour. Interobserver reliability was tested
during observer training until they achieved 95% consistency. In
addition, 13% of the trials were scored a second time by the lead
observer (K.S.) as a check on continued consistency at approxi-
mately 95%. In two of 78 tests (one nonresponder and one
responder male), sexual behaviour was initiated when there were
fewer than 120 min remaining in the recording; in these cases the
number of behaviours was prorated according to the time
remaining on the tape. Analysing the results with or without these
two individual tests did not affect the results of statistical testing.

Fertility measures
After the final behavioural test, male mice were euthanizedwith

an overdose of CO2. Body mass, wet mass of paired testes and wet
mass of seminal vesicles emptied of contents were recorded.
Seminal vesicles were emptied because the volume of the fluid
contents can vary depending upon recent ejaculations. Sperm
counts were performed on one testis and one cauda epididymis as
follows. Organs were individually homogenized in 1.0 ml of sperm-
grinding solution (5% Triton-X in 0.9% NaCl saline) and diluted to
2.0 ml volume with a 1.0 ml rinse of the homogenizer. The number
of mature sperm heads were counted in four diagonal haemocy-
tometer squares (0.25 � 0.25 mm; 0.1 mm depth) and presented as
an estimate of the total number of sperm in one testis or one cauda
epididymis. If the density of sperm heads was too dense for accu-
rate counting, a subsample was diluted and counted. For graphical
presentation, the estimates were doubled to estimate total sperm
in both testes or in both cauda epididymides.

Assessment of error rates
In two of 78 tests, behavioural observations were not consistent

with the results of vaginal lavage for spermatozoa, suggesting an
error rate of 3% (2 of 78) for the detection of sexual behaviour
followed by insemination. We repeated the statistical analyses on
behaviours after removing these two cases. Those results and
conclusions were qualitatively identical for analyses on the
numbers of mice performing sexual behaviours, the numbers
positive for spermatozoa and for the frequency of behaviours.
Based on the details of these cases, one was treated in our final
analysis as negative for behaviour and spermatozoa, and the other
as positive for both.

Experiment 2: Phenotypic Plasticity of Maturation in Response to
Olfactory Cues from Mature Females

Male mice from the F6 and F7 generations from the responder
and nonresponder lines were raised under short photoperiod,
weaned at age 22 ± 1 days, and caged singly with ad libitum food
(LM-485, Harlan Teklad) and water until measurement of body
mass and testis size at age 70 ± 3 days. At 80 ± 5 days of age, males
were assigned to receive soiled bedding from mature females
(responder: N ¼ 11 males; nonresponder: N ¼ 10 males) or a
control-bedding treatment (responder: N ¼ 13 males; nonre-
sponder: N ¼ 12 males). Within each line, males from soiled-
bedding and control-bedding groups were matched for testes size
(length �width of testis), age and body mass. Data were collected
in four runs, each of which was balanced between the control- and
soiled-bedding treatments. Twelve adult female mice housed
individually under long photoperiod provided bedding soiled with
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urine that served as the olfactory stimulus. For 4 weeks, equal
amounts of visibly soiled bedding were collected daily from the
cage of each stimulus female and replacedwith the same amount of
fresh bedding. Bedding from all 12 females was mixed, and 200 ml
from the mixed bedding was placed in the cage of each male in the
experimental groups. Controlmicewere taken daily to the handling
area, cage tops removed, and shavings disturbed in order to match
activity and disturbance of the treatment groups. Transfer of
bedding and the disturbance of the control treatment occurred
0e3 h before lights out on each day. At approximately 4-day in-
tervals, excess bedding was removed from the cages of mice in the
experimental groups.

Experiment 3: Heritable Variation in Litter Size and Mass

In the F8 to F13 generations of the two selection lines of our
breeding colony, we recorded the number of pups at weaning
(N ¼ 290 litters) to test for differences in litter size between se-
lection lines. For many litters we recorded the average body mass
and total body mass of pups in the litter at weaning. Because mice
in the responder line do not breedwell under short photoperiod, all
litters were conceived and born under long photoperiod, simu-
lating summer conditions. We tested two conditions: (1) litters
born and retained under long photoperiod experience summer-like
photoperiods and develop a long-photoperiod-typical phenotype;
(2) litters born under long photoperiod and transferred within 3
days of birth to short photoperiod experience winter-like photo-
periods and develop a short-photoperiod-typical phenotype.

Data Analysis

Data were analysed using R (v 2.14.0) with RStudio (v 0.97.449)
running on a Macintosh computer. Tests for effects of selection line
and photoperiod on body mass, reproductive organ masses, sperm
counts and specific class of behaviour were conducted using type III
ANOVA or, when covariates were included, ANCOVA. Because
reproductive organ mass and sperm count are often associated, we
assessed the strength of these associations using the Pearson's
productemoment correlation coefficient. We tested for differences
in the proportion of males showing sexual behaviour and in
insemination rates among treatment groups using the
CochraneManteleHaenszel test with continuity correction
(Agresti, 2002). We used the ‘fisher.exact’ test in R to test for effects
of photoperiod on behaviour in each selection line. To assess which
specific morphological variables or sperm counts might be most
useful to predict male sexual behaviour for future studies, we
conducted stepwise linear models for sexual behaviour. For males
that initiated sexual behaviour, we tested for differences in number
of genital grooming events, latency to initiation of sexual behav-
iour, latency to the first mount attempt, number of pursuits,
number of mount attempts, latency from first mount attempt to
first intromission, number of intromissions, latency from first
mount attempt to first ejaculation and number of ejaculations. In
experiment 2, ANOVA was used to test for effects of odour treat-
ment and selection line. In experiment 3, ANOVA was used to test
for differences in litter size or mass between selection lines in
relation to photoperiod. In experiment 1, in preliminary statistical
analyses of body mass, reproductive organ mass, sperm counts and
sexual behaviour, we used linear models including as factors (1)
generation, (2) family, (3) age in days of males at the time of testing
or (4) age in days at the time of collection of reproductive organ
masses and sperm counts. None of these additional factors had
significant effects (P > 0.25 for all tests); therefore, they were not
included in the final analyses.

The threshold for statistical significance was P < 0.05. When
multiple statistical tests were made in relation to the same hy-
pothesis, there was a possibility that false positives would occur.
We tested for potential false positives in a series of related statis-
tical tests using the false discovery rate control (Glickman, Rao, &
Schultz, 2014), setting the false discovery rate at 5% (i.e. fewer
than 5% of the probability values accepted as statistically significant
would be accepted in error).

RESULTS

Experiment 1: Variability and Phenotypic Plasticity in Sexual
Behaviour, Reproductive Organs and Body Mass

Testes and seminal vesicles were larger in nonresponder mice
than in responder mice (Fig. 1a, b, Table 1). In both lines, testes
and seminal vesicles were significantly larger under long photo-
period than under short photoperiod (Fig. 1a, b, Table 1). Although
testes mass of nonresponder mice in the short-day group was
similar to that of responder mice in the control group (Fig. 1a),
nonresponder mice in the short-day group had smaller seminal
vesicles (Fig. 1b). Body mass of adult males was slightly lower
under short photoperiod than under long photoperiod, but did
not differ significantly by line (photoperiod: F1,54 ¼ 8.59,
P ¼ 0.005; line: F1,54 ¼ 0.67, P ¼ 0.42; interaction: F1,54 ¼ 2.24,
P ¼ 0.14).

Sperm counts from the testes and cauda epididymides were
higher in nonresponder mice than in responder mice and higher
under long photoperiod than under short photoperiod (Fig. 1c, d,
Table 1). Only a few mice lacked countable heads of developing
spermatozoa in the testes and cauda epididymis and were classed
as azoospermic; all of these were responder mice in the short-day
group. When analysed with testes mass included as a covariate,
testicular sperm counts were significantly lower under short
photoperiod than under long photoperiod (Table 1). In other words,
testes had fewer sperm per unit mass under short photoperiod than
under long photoperiod (compare Fig. 1a and c).

Paired testes mass was correlated significantly with the mass of
paired seminal vesicles (r ¼ 0.88, N ¼ 58, P < 0.0001), testicular
sperm count (Fig. 2) and cauda epididymal sperm count (r ¼ 0.85,
N ¼ 58, P < 0.0001). Nearly all (95%) mice with paired testes mass
greater than 0.13 g had at least 10 million spermatozoa in the cauda
epididymides (Fig. 2). Males with paired testes mass below 0.13 g
had few or no spermatozoa in the cauda epididymis.

Sexual behaviour
The incidence of sexual behaviour with a receptive female

during the test night was greater than 75% for males in the control
groups and in the nonresponder short-day group (Fig. 3a). In
contrast, only one of 12 males in the responder short-day group
(<10%) showed male sexual behaviours during the test night
(CochraneManteleHaenszel on line, photoperiod and sexual
behaviour: c2

1 ¼7.78, P ¼ 0.005; Fig. 3a). With exact permutation
2 � 2 tests (‘fisher.exact’ in R), responder mice differed under short
and long photoperiod (P <0.001) and differed from nonresponder
mice under short photoperiod (P ¼ 0.0006). When data from the
test night and supplemental night were combined, over 90% of
males in the nonresponder and responder control groups and in
nonresponder short-day group displayed sexual behaviour (Fig. 3a).
In contrast, only 42% of males in the responder short-day group
displayed sexual behaviour during the test night and the supple-
mental night (Monte Carlo simulation with ‘fisher.exact’ test in R:
P ¼ 0.0001; Fig. 3a). For both responder and nonresponder control
groups, approximately 50% of stimulus females tested positive for
spermatozoa at the time of vaginal lavage on the following day
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(CochraneManteleHaenszel test on line, photoperiod, and insem-
ination: c2

1 ¼ 2.77, P ¼ 0.09; Fig. 3b).
When considering only data from the test night, there were too

few individuals displaying sexual behaviour in the responder short-
day group for analyses of the frequency of sexual behaviours. When
behavioural data were combined from the test night and the sup-
plemental night, there were no significant differences among
groups for any of these variables: latency to initiate sexual behav-
iour (line: F1,45 ¼ 0.01, P ¼ 0.99; photoperiod: F1,45 ¼ 0.80, P ¼ 0.38;
interaction: F1,45 ¼ 0.13, P ¼ 0.72); pursuits (line: F1,45 ¼ 0.16,
P ¼ 0.69; photoperiod: F1,45 ¼ 1.09, P ¼ 0.30; interaction:
F1,45 ¼ 0.22, P ¼ 0.64); mount attempts (line: F1,45 ¼ 0.02, P ¼ 0.90;

photoperiod: F1,45 ¼ 0.11, P ¼ 0.74; interaction: F1,45 ¼ 0.51,
P ¼ 0.48); intromissions (line: F1,45 ¼ 0.08, P ¼ 0.78; photoperiod:
F1,45 ¼ 0.44, P ¼ 0.51; interaction: F1,45 ¼ 0.05, P ¼ 0.83); ejacula-
tions (line F1,45 ¼ 0.56, P ¼ 0.46; photoperiod: F1,45 ¼ 0.33, P ¼ 0.57;
interaction: F1,45 ¼ 0.10, P ¼ 0.76).

All variables for reproductive organ mass and sperm count were
significantly related to insemination or sexual behaviour in males
(P < 0.01 for all). Using stepwise linear models, the best predictor
for detectable insemination was cauda epididymal sperm count
(F1,56 ¼ 23.82, P < 0.0001), after which no added variables were
significant. Significant predictors for sexual behaviour on the test
night were cauda epididymal sperm count (F1,56 ¼ 12.62,
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Figure 1. Mass of paired (a) testes and (b) emptied seminal vesicles and estimated sperm count for paired (c) testes and (d) cauda epididymides of male P. leucopus from a
photoperiodically nonresponder (NR) and responder (R) selection line reared under long photoperiod (LD) or short photoperiod (SD) and tested for sexual behaviour. For all four
variables, the effects of selection line and photoperiod were statistically significant (P < 0.01 for all). In (a), the two dashed lines at paired testes mass 0.45 and 0.3 g indicate the
range of testes sizes in a comparable reference sample from an unselected control line in LD (N ¼ 13). The dotted line in (a) at paired testes mass 0.05 g indicates the approximate
testis mass for azoospermia (this study; see Fig. 2). In (b), the two dashed lines at paired seminal vesicle mass 0.1 and 0.04 g indicate the range of paired seminal vesicle sizes in a
comparable reference sample from an unselected control line in LD (N ¼ 13). For (c) and (d), sperm counts from a single testis and single cauda epididymis were multiplied by two.
Values are means ± SE.

Table 1
Results from ANOVA (and, for testicular sperm count with testes mass as covariate, ANCOVA) for body mass, reproductive organ mass and sperm counts of mice from
nonresponder and responder selection lines housed under long and short photoperiods

Line Photoperiod Interaction

F1,54 P F1,54 P F1,54 P

Body mass 0.67 0.42 8.59 0.0049 2.24 0.14
Testes mass 41.56 0.0001 43.66 0.0001 0.01 0.99
Seminal vesicles mass 6.53 0.013 55.25 0.0001 0.66 0.42
Testes sperm count 24.15 0.0001 50.70 0.0001 0.04 0.84
Cauda epididymis sperm count 23.39 0.0001 20.88 0.0001 2.52 0.12
Testes sperm count (with testes mass as covariate) 0.42 0.52 7.31 0.009 0.09 0.98

Effects that were significant at P < 0.05 are indicated in bold.
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P < 0.001), seminal vesicle mass (F1,56 ¼ 10.96, P < 0.005) and se-
lection line (F1,56 ¼ 6.24, P < 0.05). However, because both testes
mass and seminal vesicle mass were highly correlated with cauda
epididymal sperm count, the mass of either organ accounted for
almost as much variation in sexual behaviour or insemination as
did cauda epididymal sperm count.

The likelihood of sexual behaviour and inseminationwas related
to testes mass and sperm counts (Fig. 2). Above a paired testes mass
of 0.225 g and sperm counts from the testes and cauda epididy-
mides above 40 million, males appeared approximately equally
likely to display sexual behaviour and inseminate females (Fig. 2).
Nearly all control males met these criteria. In contrast, males with a
paired testes mass of 0.130e0.225 g and a testicular sperm count in
the range of 20e40 million were unlikely to inseminate females
detectably, but were likely to display sexual behaviour (Fig. 2).
Males with paired testes mass below 0.130 g and a sperm count
from the testes below 20 million and from the cauda epididymides
below 10 million were unlikely to display sexual behaviour (Fig. 2).
Finally, below a paired testes mass of about 0.050 g, males were
azoospermic and did not display sexual behaviour (Fig. 2).

Experiment 2: Response of Testes and Seminal Vesicles to Soiled
Female Bedding

The testes and seminal vesicles of nonresponder males under
short photoperiod exposed daily for 4 weeks to soiled bedding from
mature females were larger than those of nonresponder controls
(Fig. 4). In contrast, the testes and seminal vesicles of responder
males with soiled bedding were similar in size to the responder
controls (Fig. 4).

For testes, there was a significant effect of selection line and
presence or absence of soiled bedding, with a marginally nonsig-
nificant interaction (line: F1,42 ¼ 23.19, P < 0.0001; soiled bedding:
F1,42 ¼ 7.04, P ¼ 0.011; interaction: F1,42 ¼ 3.31, P ¼ 0.08; Fig. 4a).
For seminal vesicles, there was a significant effect of soiled bedding
and the interaction term, but not selection line (line: F1,41 ¼ 2.35,
P ¼ 0.13; soiled bedding: F1,41 ¼ 24.07, P < 0.0001; interaction:
F1,41 ¼12.64, P ¼ 0.001; Fig. 4b). The significant interactionwas due

to doubled mass of seminal vesicles in the soiled-bedding treat-
ment of nonresponder males relative to nonresponder controls, but
lack of effect of soiled bedding on the responder line relative to
controls (Fig. 4b).

Experiment 3: Litter Size and Mass under Long and Short
Photoperiod

The selection lines did not differ significantly in litter size at
weaning (line: F1,366 ¼ 0.76, P ¼ 0.38; photoperiod: F1,366 ¼ 6.21,
P ¼ 0.01; interaction: F1,366 ¼ 0.79, P ¼ 0.38), total mass of litters
(line: F1,201 ¼ 0.85, P ¼ 0.36; photoperiod: F1,201 ¼ 0.54, P ¼ 0.46;
interaction: F1,201 ¼ 0.83, P ¼ 0.36) or averagemass of pups in litters
at weaning (line: F1,201 ¼ 0.85, P ¼ 0.36; photoperiod: F1,201 ¼ 0.21,
P ¼ 0.65; interaction: F1,201 ¼ 0.57, P ¼ 0.45; Table 2). Even though
the effect of photoperiod on litter size was P ¼ 0.01, when proba-
bility values were evaluated as a group by the false discovery rate
control (Glickman et al., 2014), this single P value less than 0.05
among nine P values did not reach statistical significance.

DISCUSSION

Our results demonstrate heritable variation in male sexual
behaviour under short photoperiod. Short photoperiod caused
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females in which spermatozoa were detected by vaginal lavage on the day following a
test night for sexual behaviour. Sample sizes of test males in each group are indicated
by numbers at the base of the bars.

K. Sharp et al. / Animal Behaviour 104 (2015) 203e212 209



lower reproductive organ mass and sperm counts in both lines
(Fig. 1), indicating that both lines detect and respond to a seasonal
photoperiod signal. Male sexual behaviour was strongly reduced
only in the responder line under short photoperiod (Fig. 3a), in
which male sexual behaviour did not occur on the test night below
defined thresholds of reproductive organ mass and sperm count
(Fig. 2). For the subset of responder males under short photoperiod
that had the largest reproductive organs and displayed sexual
behaviour, behaviours were not different from males in the other

groups. In our second experiment, there was evidence of an effect
on testes mass of olfactory cues from females (Fig. 4a). However,
olfactory cues from females did not affect the two lines in the same
way, as soiled bedding increased seminal vesicles significantly in
nonresponder males but not in responder males (Fig. 4b), with a
similar pattern of effects on testis mass (Fig. 4a). Overall, our results
imply that heritable variation in male sexual behaviour may be
expressed under short photoperiod, but not long photoperiod, in
wild populations of P. leucopus. Other studies have shown variation
in behaviour that is related to variation in reproductive respon-
derness (Gorman, Ferkin, Nelson, & Zucker, 1993), suggesting that
this type of behavioural variation might be common.

In other mammals, male sexual behaviour under short photo-
period is related to reproductive organ size and spermatogenesis
(Awoniyi et al., 1993; Campbell et al., 1978; Morin & Zucker, 1978;
Park & Rissman, 2007; Park et al., 2004; Powers et al., 1989), but
there is variability within populations in the relationship between
male sexual behaviour and testis size (Park & Rissman, 2007; Park
et al., 2004). For example, under short photoperiod, 50% of male
Siberian hamsters maintained sexual behaviour through ejacula-
tion despite testicular regression (Park et al., 2004). The results of
our study are consistent with the hypothesis that the likelihood of
sexual behaviour and insemination is related to testis size and the
availability of gametes. In our analyses, if reproductive organ mass
or sperm count had been included in a linear model for sexual
behaviour or insemination, the additional variables of ‘photoperiod’
and ‘selection line’ were unnecessary (and not statistically signifi-
cant) for predicting sexual behaviour or insemination. We identi-
fied two thresholds of reproductive organ mass and sperm count,
one for male sexual behaviour, and the other for insemination of
females. Under long photoperiod, all males were above these
thresholds and the selection lines did not differ in any measure of
sexual behaviour. Under short photoperiod, in contrast, we
observed a threshold for insemination at the lower limit of nor-
mospermy under long photoperiod (Fig. 2). Above this threshold,
males were equally likely to inseminate females, while below it
insemination was nearly absent. For male sexual behaviour, the
threshold was lower. Males in the oligospermic range with paired
testesmass above 0.13 g and sperm counts above 20million (testes)
or 10 million (cauda epididymides) were as likely to display sexual
behaviour as normospermic males (Fig. 2). However, below this
threshold males were azoospermic or severely oligospermic and
male sexual behaviour was eliminated (Fig. 2), a result in contrast to
the maintenance of sexual behaviour in hamsters that were azoo-
spermic under short photoperiod (Park et al., 2004). Our interpre-
tation is that males were likely to display sexual behaviour if they
had any potential to produce offspring, as only males with no or
almost no spermatozoa failed to display mating behaviour. Conse-
quently, males with intermediate testes sizes may incur behav-
ioural costs of reproduction under short photoperiod, including the
opportunity costs and risk costs of mating (Lima, 1998). Only
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Figure 4. Mass of paired (a) testes and (b) seminal vesicles of male P. leucopus from a
photoperiodically nonresponder (NR) and responder (R) selection line exposed under
short photoperiod either to soiled bedding (SB) from mature females, or to a control
(Cont) treatment of daily disturbance to cage bedding for 4 weeks. In (a) the effect of
selection line and treatment with soiled bedding were both statistically significant
(P < 0.01 for both), and the interaction term was marginally nonsignificant (P ¼ 0.08).
In (b), the effect of treatment with soiled bedding and the interaction term were
statistically significant (P < 0.01 for both). Values are means ± SE.

Table 2
Litter size, average mass of pups at weaning and total mass of litter at weaning for litters conceived and retained under long photoperiod (long day) or transferred after birth to
short photoperiod (short day) until weaning

Nonresponder Responder

Long day Short day Long day Short day

Litter size at weaning 4.0±0.2 (N¼83) 3.4±0.1 (N¼85) 3.8±0.2 (N¼68) 3.5±0.1 (N¼114)

Mass of each offspring at weaning 13.9±0.6 g (N¼9) 13.5±0.2 g (N¼80) 12.8±0.5 g (N¼9) 13.3±0.2 g (N¼107)

Total mass of litter at weaning 44.1±5.3 g (N¼9) 45.4±1.8 g (N¼80) 42.7±7.5 g (N¼9) 45.0±1.8 g (N¼107)

Lines were artificially selected to be nonresponder to short photoperiod (nonresponder) or responsive to short photoperiod (responder). Values are means ± SE. Sample size
(N) is the number of litters measured (see text for statistical analysis).
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azoospermic and severely oligospermic males do not attempt
mating, and therefore escape these costs.

We asked whether cues frommature females would raise short-
photoperiod thresholds for sexual behaviour or insemination in
nonresponder or responder males. Under short photoperiod, cues
from the bedding of mature females appeared to have no effect on
responder males but increased the mass of testes and seminal
vesicles of most nonresponder males to approach the means for
nonresponder males under long photoperiod (compare Fig. 1a and
b with Fig. 4). While we did not measure sperm counts in this
experiment, the high correlation between testes mass and sperm
count (Fig. 2) suggests that sperm count increasedwith testes mass.
Testes mass of nearly all bedding-exposed males in the nonre-
sponder line was above the threshold for insemination, suggesting
that even under short photoperiod, males with a nonresponder
phenotype and genotype might have normal fertility if exposed to
mature females. The phenotypically plastic stimulation by olfactory
cues in nonresponder males, but not responder males, demon-
strates heritable variation in plasticity of this response. To our
knowledge, heritable variation in phenotypic plasticity of repro-
ductive responses to olfactory cues inwild-derived populations has
not been reported previously, but Gorman et al. (1993) reported
variation in odour preferences between responder and nonre-
sponder phenotypes of meadow voles,Microtus pennsylvanicus. The
photoperiod responder and nonresponder reproductive pheno-
types showed variation in attraction to odours from their own
versus the opposite phenotype. We did not test for preferences to
odours, but it is possible that individuals might gain a fitness
advantage in the response to odour cues and preferences to odour
cues by maximizing interactions between reproductively active
individuals. If males from our selection lines have preferences
similar to those described by Gorman et al. (1993), then nonre-
sponder males preferring the odours of mature nonresponder fe-
males would also be reproductively stimulated by those olfactory
cues, while responder males would be neither attracted nor
affected.

Other populations of Peromyscus that contain heritable variation
in reproductive response to short photoperiod (Desjardins et al.,
1986; Heideman & Bronson, 1991; Prendergast et al., 2001;
Wichman & Lynch, 1991) also may contain heritable variation in
phenotypic plasticity of reproductive response to mature females
under short photoperiod. In a study on our source population,
Terman (1984) reported acceleration of puberty under long
photoperiod in our source population of P. leucopus, but did not test
mice under short photoperiod. In previous studies, puberty was
accelerated in young male Peromyscus maniculatus when housed
with adult females under short photoperiod (Whitsett & Lawton,
1982), while young males from a population of P. leucopus were
unaffected by housing with adult females under short photoperiod
(Pyter, Neigh, & Nelson, 2005). Studies that show significant re-
sponses to cues frommature females under short photoperiod may
have a high proportion of males that are phenotypically plastic in
response to cues from mature females, and those that show no
response may have a high proportion of males that lack phenotypic
plasticity. Results would vary depending upon the balance of
genotypes.

We hypothesized that heritable differences in male sexual
behaviour, sperm count and size of reproductive organs might
cause differences in litter size between the nonresponder and
responder lines. For litters conceived under long photoperiod, the
photoperiod in which both nonresponder and responder mice are
fertile, we found no significant differences between selection lines
in litter mass or number of pups per litter regardless of whether
mice had been raised under long or short photoperiod (Table 2).
Even though a low level of male sexual behaviour impairs fertility

in the responder line under short photoperiod, our results do not
suggest that any impaired fertility occurs in the longer photope-
riods of summer. In mammals, including species of Peromyscus,
large reproductive organs, high sperm count and frequent male
sexual behaviour are associated with fitness advantages when
males mate with multiple females in succession or are in sperm
competition (Dixson & Anderson, 2004; Fisher & Hoekstra, 2010;
Ramm, Parker, & Stockley, 2005). The monogamous pairings in
our laboratory colony block these potential fitness advantages,
although additional effects on fitness are possible in thewild source
population.

One objective of our laboratory examination of genetic variation
and phenotypic plasticity was to gain insights that may be relevant
in natural populations. In winter, an average of 35e55% of wild
females from our source population were pregnant or lactating
from 1983 to 1989 (Terman, 1993). Wild males from the source
population in winter have testes sizes in the same size range
(0.02e0.65 g, N ¼ 33; Proffitt, 2014) as those from our selection
lines under short photoperiod (Broussard et al., 2009; Heideman
et al., 1999; this study). We assume that sperm counts may also
be similar based on the relationship found in this study (Fig. 2). In
the wild, our results suggest that males at the low azoospermic or
highly oligospermic end of this range would display no sexual
behaviour in winter. Males with reproductive organs that are in-
termediate in size might display sexual behaviour, but have low
rates of successful insemination. However, if intermediate males
have a nonresponder genotype, then exposure to olfactory cues
from mature females would increase the mass of reproductive or-
gans to match those of males under long photoperiod (Fig. 4).

Winter reproduction is often viewed as a costebenefit trade-off,
in which the potential increase in fitness fromwinter reproduction
is offset by a relatively high cost of reproduction in winter
(Heideman, Rightler, & Sharp, 2005; Horton & Rowsemitt, 1992;
Prendergast et al., 2001). Selection favouring winter sexual
behaviour and reproduction would increase the frequency of non-
responders and cause population growth in winter (Nelson, 1987).
Selective association of nonresponder individuals (Gorman et al.,
1993) may provide odour cues that stimulate reproductive matu-
ration (this study). Adaptation of populations to a changing climate
has been hypothesized to be dependent upon the presence of
heritable variation in seasonal timing of reproduction (Bradshaw &
Holzapfel, 2008; Myers, Lundrigan, & Vande Kopple, 2005; Visser,
2008), including seasonality of sexual behaviour (this study).
These hypotheses could be tested by investigating heritable varia-
tion in behavioural responderness in wild populations.
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