15,906 research outputs found

    Quantum criticality in a generalized Dicke model

    Get PDF
    We employ a generalized Dicke model to study theoretically the quantum criticality of an extended two-level atomic ensemble interacting with a single-mode quantized light field. Effective Hamiltonians are derived and diagonalized to investigate numerically their eigenfrequencies for different quantum phases in the system. Based on the analysis of the eigenfrequencies, an intriguing quantum-phase transition from a normal phase to a superradiant phase is revealed clearly, which is quite different from that observed with a standard Dicke model.Comment: 6 pages, 3 figure

    The Big Bang as a Phase Transition

    Full text link
    We study a five-dimensional cosmological model, which suggests that the universe bagan as a discontinuity in a (Higgs-type) scalar field, or alternatively as a conventional four-dimensional phase transition.Comment: 10 pages, 2 figures; typo corrected in equation (18); 1 reference added; version to appear in International Journal of Modern Physics

    Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal.

    Get PDF
    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility

    SMA Imaging of CO(3-2) Line and 860 micron Continuum of Arp 220 : Tracing the Spatial Distribution of Luminosity

    Full text link
    We used the Submillimeter Array (SMA) to image 860 micron continuum and CO(3-2) line emission in the ultraluminous merging galaxy Arp 220, achieving a resolution of 0.23" (80 pc) for the continuum and 0.33" (120 pc) for the line. The CO emission peaks around the two merger nuclei with a velocity signature of gas rotation around each nucleus, and is also detected in a kpc-size disk encompassing the binary nucleus. The dust continuum, in contrast, is mostly from the two nuclei. The beam-averaged brightness temperature of both line and continuum emission exceeds 50 K at and around the nuclei, revealing the presence of warm molecular gas and dust. The dust emission morphologically agrees with the distribution of radio supernova features in the east nucleus, as expected when a starburst heats the nucleus. In the brighter west nucleus, however, the submillimeter dust emission is more compact than the supernova distribution. The 860 micron core, after deconvolution, has a size of 50-80 pc, consistent with recent 1.3 mm observations, and a peak brightness temperature of (0.9-1.6)x10^2 K. Its bolometric luminosity is at least 2x10^{11} Lsun and could be ~10^{12} Lsun depending on source structure and 860 micron opacity, which we estimate to be of the order of tau_{860} ~ 1 (i.e., N_{H_2} ~ 10^{25} cm^{-2}). The starbursting west nuclear disk must have in its center a dust enshrouded AGN or a very young starburst equivalent to hundreds of super star clusters. Further spatial mapping of bolometric luminosity through submillimeter imaging is a promising way to identify the heavily obscured heating sources in Arp 220 and other luminous infrared galaxies.Comment: ApJ. in press. 26 pages, 10 figure

    Collisions of cold magnesium atoms in a weak laser field

    Full text link
    We use quantum scattering methods to calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 30 atomic linewidths to the red of the 1S_0-1P_1 cooling transition. Magnesium has no hyperfine structure to complicate the theoretical studies. We evaluate both the radiative and nonradiative mechanisms of trap loss. The radiative escape mechanism via allowed 1Sigma_u excitation is dominant for more than about one atomic linewidth detuning. Molecular vibrational structure due to photoassociative transitions to bound states begins to appear beyond about ten linewidths detuning.Comment: 4 pages with 3 embedded figure

    An Infinite Swapping Approach to the Rare-Event Sampling Problem

    Full text link
    We describe a new approach to the rare-event Monte Carlo sampling problem. This technique utilizes a symmetrization strategy to create probability distributions that are more highly connected and thus more easily sampled than their original, potentially sparse counterparts. After discussing the formal outline of the approach and devising techniques for its practical implementation, we illustrate the utility of the technique with a series of numerical applications to Lennard-Jones clusters of varying complexity and rare-event character.Comment: 24 pages, 16 figure

    Differences Between The Optical/Uv Spectra Of X-Ray Bright And X-Ray Faint QSOs

    Full text link
    We contrast measurements of composite optical and ultraviolet (UV) spectra constructed from samples of QSOs defined by their soft X-ray brightness. X-ray bright (XB) composites show stronger emission lines in general, but particularly from the narrow line region. The difference in the [OIII]/Hbeta ratio is particularly striking, and even more so when blended FeII emission is properly subtracted. The correlation of this ratio with X-ray brightness were principal components of QSO spectral diversity found by Boroson & Green (1992). We find here that other, much weaker narrow optical forbidden lines ([OII] and NeV) are enhanced by factors of 2 to 3 in our XB composites, and that narrow line emission is also strongly enhanced in the XB UV composite. Broad permitted line fluxes are slightly larger for all XB spectra, but the narrow/broad line ratio stays similar or increases strongly with X-ray brightness for all strong permitted lines except Hbeta. Spectral differences between samples divided by their relative X-ray brightness (as measured by alpha_{ox}) exceed those seen between complementary samples divided by luminosity or radio loudness. We propose that the Baldwin effect may be a secondary correlation to the primary relationship between alpha_{ox} and emission line equivalent width. We conclude that either 1) equivalent width depends strongly on the SHAPE of the ionizing continuum, as crudely characterized here by alpha_{ox} or 2) both equivalent width and alpha_{ox} are related to some third parameter characterizing the QSO physics. One such possibility is intrinsic warm absorption; a soft X-ray absorber situated between the broad and narrow line regions can successfully account for many of the properties observed.Comment: 16 pages including 3 figures, AAS latex, plus 4 tables totaling 5 pages, to appear in ApJ Vol. 498, May 1, 199

    Spin dynamics near a putative antiferromagnetic quantum critical point in Cu substituted BaFe2_2As2_2 and its relation to high-temperature superconductivity

    Get PDF
    We present the results of elastic and inelastic neutron scattering measurements on non-superconducting Ba(Fe0.957{_{0.957}}Cu0.043{_{0.043}})2{_2}As2{_2}, a composition close to a quantum critical point between AFM ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low Cu composition as well as the parent compound BaFe2_2As2_2 and superconducting Ba(Fe1x_{1-x}Nix_x)2_2As2_2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957_{0.957}Cu0.043_{0.043})2_2As2_2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. We also show that the spin-spin correlation length, ξ(T){\xi(T)}, increases rapidly as the temperature is lowered and find ω/T{\omega/T} scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.Comment: 10 pages, 7 figure
    corecore