research

Spin dynamics near a putative antiferromagnetic quantum critical point in Cu substituted BaFe2_2As2_2 and its relation to high-temperature superconductivity

Abstract

We present the results of elastic and inelastic neutron scattering measurements on non-superconducting Ba(Fe0.957{_{0.957}}Cu0.043{_{0.043}})2{_2}As2{_2}, a composition close to a quantum critical point between AFM ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low Cu composition as well as the parent compound BaFe2_2As2_2 and superconducting Ba(Fe1x_{1-x}Nix_x)2_2As2_2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957_{0.957}Cu0.043_{0.043})2_2As2_2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. We also show that the spin-spin correlation length, ξ(T){\xi(T)}, increases rapidly as the temperature is lowered and find ω/T{\omega/T} scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.Comment: 10 pages, 7 figure

    Similar works