469 research outputs found

    The mechanics of the conform continuous extrusion process

    Get PDF
    The work describes the programme of activities relating to a mechanical study of the Conform extrusion process. The main objective was to provide a basic understanding of the mechanics of the Conform process with particular emphasis placed on modelling using experimental and theoretical considerations. The experimental equipment used includes a state of the art computer-aided data-logging system and high temperature loadcells (up to 260oC) manufactured from tungsten carbide. Full details of the experimental equipment is presented in sections 3 and 4. A theoretical model is given in Section 5. The model presented is based on the upper bound theorem using a variation of the existing extrusion theories combined with temperature changes in the feed metal across the deformation zone. In addition, constitutive equations used in the model have been generated from existing experimental data. Theoretical and experimental data are presented in tabular form in Section 6. The discussion of results includes a comprehensive graphical presentation of the experimental and theoretical data. The main findings are: (i) the establishment of stress/strain relationships and an energy balance in order to study the factors affecting redundant work, and hence a model suitable for design purposes; (ii) optimisation of the process, by determination of the extrusion pressure for the range of reduction and changes in the extrusion chamber geometry at lower wheel speeds; and (iii) an understanding of the control of the peak temperature reach during extrusion

    Information Literacy in Students Entering Higher Education in the French Speaking Community of Belgium: lessons learned from an evaluation

    Full text link
    Although universities are providing more and more information literacy training for their undergraduate students, the students’ real level of information literacy at the beginning of their studies has never been assessed. Hence EduDOC has decided to team up with the CIUF ‘Library’ Commission in order to organize a wide study aiming at objectively describing this initial level of information literacy, at identifying the students’ main weaknesses, as well as allowing instructors to adjust their training on this basis. The questionnaire was based on a similar study carried out in Québec and contains 20 questions grouped in five themes relating to information search steps. It was sent in September 2007 to a random sample of students entering a higher education institution in the French Speaking Community of Belgium for the first time. The students’ rather poor results confirm that organizing an information literacy program is imperative if students are to perform well in their studies.Peer reviewe

    Responses of a long-coil pulse-modulated induction plasma

    Full text link

    Diagnosis of large volume pulse modulated Ar-H2 plasmas

    Get PDF
    金沢大学工学部Atmospheric pressure plasma in pre-mixed Ar/H2 flow was generated by pulse-modulation method. The coil length of the inductively-coupled plasma (ICP) torch was extremely large. The source side power was 30 kW before pulsation, and thus the plasma power had around 25.6 kW considering 85% matching efficiency

    The role of GABAergic modulation in motor function related neuronal network activity

    Get PDF
    At rest, the primary motor cortex (M1) exhibits spontaneous neuronal network oscillations in the beta (15–30 Hz) frequency range, mediated by inhibitory interneuron drive via GABA-A receptors. However, questions remain regarding the neuropharmacological basis of movement related oscillatory phenomena, such as movement related beta desynchronisation (MRBD), post-movement beta rebound (PMBR) and movement related gamma synchronisation (MRGS). To address this, we used magnetoencephalography (MEG) to study the movement related oscillatory changes in M1 cortex of eight healthy participants, following administration of the GABA-A modulator diazepam. Results demonstrate that, contrary to initial hypotheses, neither MRGS nor PMBR appear to be GABA-A dependent, whilst the MRBD is facilitated by increased GABAergic drive. These data demonstrate that while movement-related beta changes appear to be dependent upon spontaneous beta oscillations, they occur independently of one other. Crucially, MRBD is a GABA-A mediated process, offering a possible mechanism by which motor function may be modulated. However, in contrast, the transient increase in synchronous power observed in PMBR and MRGS appears to be generated by a non-GABA-A receptor mediated process; the elucidation of which may offer important insights into motor processes

    Responses of a long-coil pulse-modulated induction plasma

    Get PDF
    Radio-frequency inductively coupled plasma in a pulse modulated approach was generated by a MOSFET inverter supply of high electric efficiency. The plasma torch has an extremely long coil region of 153 mm, which is an attractive feature for advanced materials processing, especially for better and more efficient vaporizing of solids. The operating conditions were: argon flow of 80 or 90 L/m at atmospheric pressure; supply power of 30 kW; and pulse on-time of 10 ms at 67% duty factor. Spectroscopic measurements were carried out to determine the temporal plasma properties, including the effects of shimmer current level (SCL) upon the spectral intensities. Additionally a time-dependent two-dimensional numerical model was solved for the same operating conditions employed in the experiment to predict and compare the plasma properties. Pulsed plasma dissipation sustained for a minimum SCL of 43% for 80 L/m gas flow-rate, and at any level below 43%, the plasma disappeared. Temporal variation of argon line intensities at 751 and 763.5 nm is similar, though the upper level intensity of the former one was significantly stronger than the latter. Intensified change of intensity is found at lower SCL because of higher change in the coil current and, in turn, in the plasma power. The predicted intensity of the 751-nm argon line showed similar behavior to the experimental intensity though the response around the instant of on-pulsation is somewhat slowe

    A comparative study of transient characteristics of argon and argon-hydrogen pulse modulated induction thermal plasma

    Get PDF
    Solving a time-dependent two-dimensional local thermodynamic equilibrium (LTE) model simulation of Ar and Ar-H2 atmospheric pressure, a high-power RF-induction thermal plasma was performed. The effects of shimmer current level (SCL) in pulse-modulated mode and hydrogen concentrations on different flow fields were predicted. The radiation intensities of Ar I (751 nm) for different SCL were calculated from the temperature fields. For the same operating conditions as simulation, plasma was successfully generated in pulse-modulated mode and spectroscopic measurements were carried out to investigate the effects of SCL upon temporal plasma properties. Response times (rising, falling, on-delay, and off-delay time) of temporal radiation intensity were crosschecked for both experimental and simulated ones. The rising time increased gradually with the decrease of SCL, though the falling time remained almost unchanged with SCL. For example, for Ar plasma at 86 percent , 79 percent , 72 percent , 65 percent , 50 percent , and 40 percent SCL the rising times were 2.7, 3.0, 3.4, 3.4, 3.6, and 3.8 ms, respectively. And for Ar-H2 plasma (2.4 percent H2), at 87 percent , 77 percent , 72 percent , 63 percent , 55 percent , and 45 percent SCL, rising times were 2.5, 3.0, 3.0, 3.4, 3.7, 3.9, and 4.0 ms, respectively. Hydrogen inclusion slowed down the plasma response during the off-to-on pulsing transition at lower SCL and constricted the plasma axially. Finally, part of the simulated results was compared with experimental determinations and acceptable agreements were found. The discrepancies, in few cases, explicated mainly that the LTE assumption did not prevail in pulse-modulated plasma, especially around the on-pulse transitio

    Scanning acoustic microscopy investigation of engineered flip-chip delamination

    Get PDF
    The rapid uptake of flip-chip technology within the electronics industry, is placing the reliability of such assemblies under increasing scrutiny. A key feature of the assembly process is the application of underfill to reinforce the attachment of the die to the printed circuit board. This has been identified in numerous studies as one of the major ways in which the reliability of the devices can be improved, by mitigating the coefficient of thermal expansion mismatch between chip and board. However, in order for the underfill to be effective in coupling the die to the circuit board, its adhesion to the passivation layer of the die and the solder mask layer on the PCB must be maximised. There is a growing body of literature that indicates that poor adhesion at either interface (delamination) as a result of contamination can result in premature failure of the assembly through stress fracture of the solder joints. In order to investigate further the effect of delamination on the reliability of flip-chip assemblies, surface chemistry has been used to control the adhesion of the underfill to the die passivation. This paper reports how modification of the die surface by the application of a low surface energy coating, which prevents the strong adhesion of the underfill, has enabled the selective delamination of the device at the chip-to-underfill interface. Using scanning acoustic microscopy (SAM) the effectiveness of this treatment in creating controlled delamination before and after thermal cycling has been monitored. The ability to engineer delamination, can enable experimental studies of the mechanics of flip chip assembly failure, which complement current finite element modelling work

    High-harmonic generation from a confined atom

    Full text link
    The order of high harmonics emitted by an atom in an intense laser field is limited by the so-called cutoff frequency. Solving the time-dependent Schr\"odinger equation, we show that this frequency can be increased considerably by a parabolic confining potential, if the confinement parameters are suitably chosen. Furthermore, due to confinement, the radiation intensity remains high throughout the extended emission range. All features observed can be explained with classical arguments.Comment: 4 pages(tex files), 4 figures(eps files); added references and comment
    • …
    corecore