233 research outputs found

    Linear interference and the initiation of extratropical stratosphere-troposphere interactions

    Get PDF
    Vertical fluxes of wave activity from the troposphere to the stratosphere correlate negatively with the Northern Annular Mode (NAM) index in the stratosphere and subsequently in the troposphere. Recent studies have shown that stratospheric NAM variability is also negatively correlated with the amplitude of the wave pattern coherent with the large-scale climatological stationary wavefield; when the climatological stationary wavefield is amplified or attenuated, the stratospheric jet correspondingly weakens or strengthens. Here we quantify the importance of this linear interference effect in initiating stratosphere-troposphere interactions by performing a decomposition of the vertical wave activity flux using reanalysis data. The interannual variability in vertical wave activity flux in both the Northern and Southern Hemisphere extratropics is dominated by linear interference of quasi-stationary waves during the season of strongest stratosphere-troposphere coupling. Composite analysis of anomalous vertical wave activity flux events reveals the significant role of linear interference and shows that "linear" and "nonlinear" events are essentially independent. Linear interference is the dominant contribution to the vertical wave activity flux anomalies preceding displacement stratospheric sudden warmings (SSWs) while split SSWs are preceded by nonlinear wave activity flux anomalies. Wave activity variability controls the timing of stratospheric final warmings, and this variability is shown to be dominated by linear interference, particularly in the Southern Hemisphere. The persistence of the linear interference component of the vertical wave activity flux, corresponding to persistent constructive or destructive interference between the wave-1 component of climatological stationary wave and the wave anomaly, may help improve wintertime extratropical predictability

    The Coupled Stratosphere–Troposphere Response to Impulsive Forcing from the Troposphere

    Get PDF
    A simple atmospheric general circulation model (GCM) is used to investigate the transient response of the stratosphere–troposphere system to externally imposed pulses of lower-tropospheric planetary wave activity. The atmospheric GCM is a dry, hydrostatic, global primitive-equations model, whose circulation includes an active polar vortex and a tropospheric jet maintained by baroclinic eddies. Planetary wave activity pulses are generated by a perturbation of the solid lower boundary that grow and decay over a period of 10 days. The planetary wave pulses propagate upward and break in the stratosphere. Subsequently, a zonal-mean circulation anomaly propagates downward, often into the troposphere, at lags of 30–100 days. The evolution of the response is found to be dependent on the state of the stratosphere–troposphere system at the time the pulse is generated. In particular, on the basis of a large ensemble of these simulations, it is found that the length of time the signal takes to propagate downward from the stratosphere is controlled by initial anomalies in the zonal-mean circulation and in the zonal-mean wave drag. Criteria based on these anomaly patterns can be used, therefore, to predict the long-term surface response of the stratosphere–troposphere system to a planetary wave pulse up to 90 days after the pulse is generated. In an independent test, it is verified that the initial states that most strongly satisfy these criteria respond in the expected way to the lower-tropospheric wave activity pulse

    Limited Influence of Localized Tropical Sea-Surface Temperatures on Moisture Transport into the Arctic

    Get PDF
    Arctic moisture transport is dominated by planetary-scale waves in reanalysis. Planetary waves are influenced by localized Sea-Surface Temperature (SST) features such as the tropical warm pool. Here, an aquaplanet model is used to clarify the link between tropical SST anomalies and Arctic moisture transport. In a zonally uniform setup with no climatological east-west gradients, Arctic moisture transport is dominated by transient planetary waves, as in reanalysis. Warming tropical SSTs by heating the ocean strengthens Arctic moisture transport, mediated mostly by changes in water vapor rather than eddies. This strengthening occurs whether the tropical warming is zonally uniform or localized. Cooling tropical SSTs weakens Arctic moisture transport; however, unlike warming, the pattern matters, with localized cooling producing stronger transport changes owing to nonlinear feedbacks in the surface energy budget. Thus, the simulations show that localized tropical SST anomalies influence Arctic moisture transport differently than uniform anomalies, but only in cooling scenarios.publishedVersio

    Climate‐related variations in mixing dynamics in an Alaskan arctic lake

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109805/1/lno2009546part22401.pd
    • 

    corecore