1,303 research outputs found

    Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK)

    Get PDF
    The effects of climate change and variability on river flows have been widely studied. However the impacts of such changes on sediment transport have received comparatively little attention. In part this is because modelling sediment production and transport processes introduces additional uncertainty, but it also results from the fact that, alongside the climate change signal, there have been and are projected to be significant changes in land cover which strongly affect sediment-related processes. Here we assess the impact of a range of climatic variations and land covers on the River Thames catchment (UK). We first calculate a response of the system to climatic stressors (average precipitation, average temperature and increase in extreme precipitation) and land-cover stressors (change in the extent of arable land). To do this we use an ensemble of INCA hydrological and sediment behavioural models. The resulting system response, which reveals the nature of interactions between the driving factors, is then compared with climate projections originating from the UKCP09 assessment (UK Climate Projections 2009) to evaluate the likelihood of the range of projected outcomes. The results show that climate and land cover each exert an individual control on sediment transport. Their effects vary depending on the land use and on the level of projected climate change. The suspended sediment yield of the River Thames in its lowermost reach is expected to change by āˆ’4% (āˆ’16% to +13%, confidence interval, p = 0.95) under the A1FI emission scenario for the 2030s, although these figures could be substantially altered by an increase in extreme precipitation, which could raise the suspended sediment yield up to an additional +10%. A 70% increase in the extension of the arable land is projected to increase sediment yield by around 12% in the lowland reaches. A 50% reduction is projected to decrease sediment yield by around 13%

    Impacts of Droughts and Acidic Deposition on Long-Term Surface Water Dissolved Organic Carbon Concentrations in Upland Catchments in Wales

    Get PDF
    Concerns have been raised about rising trends in surface water dissolved organic carbon (DOC) concentrations in UK upland catchments over the past decades. Several mechanisms have been proposed to explain these trends, including changes in climate and declines in sulfate deposition across Europe. Drier summers and wetter winters are projected in the UK, and there is an increasing interest in whether the rising trends of DOC would be continued or stabilized. In this paper, the INCA (INtegrated CAtchment) water quality model was applied to the upland catchment of the River Severn at Plynlimon in Wales and used to simulate the effects of both climate and sulfate deposition on surface water DOC concentrations. We introduced new parameter sets of INCA to explain enzymatic latch effect in peatlands during droughts. The model was able to simulate recent past (1995-2013) rising trends in DOC in Plynlimon. Climatic projections were employed to estimate the future trends on DOC in the uplands and to consider potential impacts on catchment management. The model was run with climatic scenarios generated using the weather@home2 climate modeling platform and with sulfate deposition scenarios from the European Monitoring and Evaluation Programme (EMEP) for 1975-2100. The modeling results show that the rising DOC trends are likely to continue in the near future (2020-2049) and the level of DOC concentrations is projected to stabilize in the far future (2070-2099). However, in the far future, the seasonal patterns of DOC concentrations will change, with a post-drought DOC surge in autumn months

    Dynamic response of land use and river nutrient concentration to long-term climatic changes

    Get PDF
    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames

    Assessment of risks to public water supply from low flows and harmful water quality in a changing climate

    Get PDF
    Water resources planning and management by water utilities have traditionally been based on consideration of water availability. However, the reliability of public water supplies can also be influenced by the quality of water bodies. In this study, we proposed a framework that integrates the analysis of risks of inadequate water quality and risks of insufficient water availability. We have developed a coupled modeling system that combines hydrological modeling of river water quantity and quality, rules for water withdrawals from rivers into storage reservoirs, and dynamical simulation of harmful algal blooms in storage reservoirs. We use this framework to assess the impact of climate change, demand growth, and landā€use change on the reliability of public water supplies. The proposed method is tested on the River Thames catchment in the south of England. The results show that alongside the wellā€known risks of rising water demand in the south of England and uncertain impacts of climate change, diffuse pollution from agriculture and effluent from upstream waste water treatment works potentially represent a threat to the reliability of public water supplies in London. We quantify the steps that could be taken to ameliorate these threats, though even a vigorous pollutionā€prevention strategy would not be sufficient to offset the projected effects of climate change on water quality and the reliability of public water supplies. The proposed method can help water utilities to recognize their system vulnerability and evaluate the potential solutions to achieve more reliable water supplies. supplie

    Quality and Severity of Lower Urinary Tract Symptoms among African American Elders

    Full text link
    Lack of population-based data on lower urinary tract symptoms (LUTS) among African American men represents a significant gap in understanding. This study examined LUTS among a racially over-sampled, mixed urban/rural, elderly cohort of African Americans and whites in the South to discern whether racial differences exist in the prevalence, severity, and associated risk factors of LUTS. Longitudinal analyses using generalized estimating equations (GEE) were conducted on the 1994ā€“1998 EPESE dataset for 5 North Carolina counties. In 1994, the analytic cohort included 482 African Americans and 407 whites; by 1998, 249 and 222, respectively. In 1994, 49.4% of African Americans reported LUTS compared to 56.8% of whites. By 1998, percentages increased to 60.6% and 70.3%, respectively. LUTS was associated with being African American, married, having poor health status and disability, delaying care quite often, being in a nursing home or in a rural area, and having a male physician

    Long-term predictions of ecosystem acidification and recovery

    Get PDF
    This paper considers the long-term (500 year) consequences of continued acid deposition, using a small forested catchment in S. England as an example. The MAGIC acidification model was calibrated to the catchment using data for the year 2000, and run backwards in time for 200 years, and forwards for 500. Validation data for model predictions were provided by various stream and soil measurements made between 1977 and 2013. The model hindcast suggests that pre-industrial stream conditions were very different from those measured in 2000. Acid Neutralising Capacity (ANC) was +150 Ī¼eq Lāˆ’1 and pH 7.1: there was little nitrate (NO3). By the year 2000, acid deposition had reduced the pH to 4.2 and ANC to c. āˆ’100 Ī¼eq Lāˆ’1, and NO3 was increasing in the stream. The future state of the catchment was modelled using actual deposition reductions up to 2013, and then based on current emission reduction commitments. This leads to substantial recovery, to pH 6.1, ANC +43 Ī¼eq Lāˆ’1, though it takes c. 250 years. Then, however, steady acidification resumes, due to continued N accumulation in the catchment and leaching of NO3. Soil data collected using identical methods in 1978 and 2013 show that MAGIC correctly predicts the direction of change, but the observed data show more extreme changes ā€“ reasons for this are discussed. Three cycles of forest growth were modelled ā€“ this reduces NO3 output substantially during the active growth phase, and increases stream pH and ANC, but acidifies the soil which continues to accumulate nitrogen. The assumptions behind these results are discussed, and it is concluded that unmanaged ecosystems will not return to a pre-industrial state in the foreseeable future

    Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK)

    Get PDF
    Potential increases of phytoplankton concentrations in river systems due to global warming and changing climate could pose a serious threat to the anthropogenic use of surface waters. Nevertheless, the extent of the effect of climatic alterations on phytoplankton concentrations in river systems has not yet been analysed in detail. In this study, we assess the impact of a change in precipitation and temperature on river phytoplankton concentration by means of a physically-based model. A scenario-neutral methodology has been employed to evaluate the effects of climate alterations on flow, phosphorus concentration and phytoplankton concentration of the River Thames (southern England). In particular, five groups of phytoplankton are considered, representing a range of size classes and pigment phenotypes, under three different land-use/land-management scenarios to assess their impact on phytoplankton population levels. The model results are evaluated within the framework of future climate projections, using the UK Climate Projections 09 (UKCP09) for the 2030s. The results of the model demonstrate that an increase in average phytoplankton concentration due to climate change is highly likely to occur, with the magnitude varying depending on the location along the River Thames. Cyanobacteria show significant increases under future climate change and land use change. An expansion of intensive agriculture accentuates the growth in phytoplankton, especially in the upper reaches of the River Thames. However, an optimal phosphorus removal mitigation strategy, which combines reduction of fertiliser application and phosphorus removal from wastewater, can help to reduce this increas

    From paradox to pattern shift: Conceptualising liminal hotspots and their affective dynamics

    Get PDF
    This article introduces the concept of liminal hotspots as a specifically psychosocial and sociopsychological type of wicked problem, best addressed in a process-theoretical framework. A liminal hotspot is defined as an occasion characterised by the experience of being trapped in the interstitial dimension between different forms-of-process. The paper has two main aims. First, to articulate a nexus of concepts associated with liminal hotspots that together provide general analytic purchase on a wide range of problems concerning ā€œtroubledā€ becoming. Second, to provide concrete illustrations through examples drawn from the health domain. In the conclusion, we briefly indicate the sense in which liminal hotspots are part of broader and deeper historical processes associated with changing modes for the management and navigation of liminality
    • ā€¦
    corecore