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Abstract water resources planning and management by water utilities have traditionally been based on
consideration of water availability. However, the reliability of public water supplies can also be

influenced by the quality of water bodies. In this study, we proposed a framework that integrates the analysis
of risks of inadequate water quality and risks of insufficient water availability. We have developed a coupled
modeling system that combines hydrological modeling of river water quantity and quality, rules for

water withdrawals from rivers into storage reservoirs, and dynamical simulation of harmful algal blooms in
storage reservoirs. We use this framework to assess the impact of climate change, demand growth, and
land-use change on the reliability of public water supplies. The proposed method is tested on the River
Thames catchment in the south of England. The results show that alongside the well-known risks of rising
water demand in the south of England and uncertain impacts of climate change, diffuse pollution from
agriculture and effluent from upstream waste water treatment works potentially represent a threat to the
reliability of public water supplies in London. We quantify the steps that could be taken to ameliorate these
threats, though even a vigorous pollution-prevention strategy would not be sufficient to offset the
projected effects of climate change on water quality and the reliability of public water supplies. The proposed
method can help water utilities to recognize their system vulnerability and evaluate the potential solutions to
achieve more reliable water supplies.

1. Introduction

The reliability of public water supplies not only depends upon water availability but also upon its quality. In
many countries, it is mandatory for water utilities to treat and supply water to specific water quality stan-
dards. If the quality of water bodies, such as rivers, reservoirs, or groundwater sources, is poor, then the
water companies might decide not to withdraw water from these sources, even if it is needed, as either
the water cannot be adequately purified by the treatment works or the treatment cost would be excessively
high. Water quality is also a concern for other abstractors, including thermoelectric power plants, where
high algal concentrations can lead to cooling plant malfunction, and agricultural abstractors for whom high
salinity inhibits plant growth.

Most past studies have considered water quality or water quantity issues separately, but there is a growing
literature of coupled studies. Yuan et al. (2015) developed a water quantity and quality joint-operation model
of dams and floodgates, where the aim of their model was to find a balance between flood control and pollu-
tion prevention. Paredes-Arquiola et al. (2010) examined both water quality and quantity in a river basin and
investigated how water quality in the river may change if the water allocations or reservoirs operation
change. They also tested alternative future plans, such as the upgrading of wastewater treatment plants in
the basin. In a similar study, Zhang et al. (2010) developed an integrated quality-quantity model to test
the impact of water allocation scenarios on water quality in a river basin in China to calculate water deficit
for different uses considering water quality requirements. Azevedo et al. (2000) developed a stochastic model
for integration of water quality-quantity models and tested six management options formed by various reser-
voir operation rules and levels of wastewater treatment. All these studies were carried out using historical
data. Zoltay et al. (2010) introduced an integrated watershed management model including water quality
and land-use change to assess a variety of watershed management options. They considered annual net cost
benefit (total revenue minus total cost) and in-stream flows as objectives, using a model that was lumped in
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both time (ran just for one year) and space. Although these studies aimed to integrate water quality-quantity
models and addressed rivers and reservoirs water quality, none of them explicitly assessed the impacts of
water quality-quantity on the reliability of public, municipal, or urban water supply.

Reliability of water supply is one of the main concerns of water utilities. Though quantification of the relia-
bility of water supplies is a long-standing problem in water resource systems analysis (Hashimoto et al.,
1982), there has been growing recent attention in the context of uncertain future climatic changes
(Borgomeo et al., 2016; Borgomeo et al., 2014; Chung et al., 2009; Hall et al., 2012; Matrosov et al., 2015;
Mortazavi-Naeini et al., 2014; Mortazavi-Naeini et al., 2015). There is growing recognition that the perfor-
mance of water supply systems should be measured in terms of observable outcomes for water users (Hall
et al., 2012), including the reliability of water supplies, or, on the other hand, the frequency, severity, and
duration for which users’ access to water may need to be curtailed because of water shortages. In England
this performance metric is articulated in terms of levels of service (LoS), which are typically presented as
return periods (e.g., 1 in 20 years) and represent the target frequencies that restrictions on water use, of a
given severity (e.g., bans on watering domestic gardens), should not exceed.

Water resources management planners are increasingly aware of the effects that climate change and rising
demand for water may have on the reliability of water supplies. For example, many studies have been con-
ducted to assess potential impacts of climate change, such as changes in river flows (Arnell et al., 2014;
Leavesley, 1994; Vano et al., 2010; Wilby & Harris, 2006) and water quality (Whitehead et al., 2009).

None of abovementioned studies have addressed climate change impacts on public water supply by consid-
ering both water quality and quantity impacts. This is a significant gap, as deteriorated quality in water
bodies can constrain the water that is available for use for public water supplies. Therefore, we developed
an integrated model of water quality-quantity for assessing impacts of climate and land-use change, up to
the end of the 21st century, on the reliability of public water supplies. This methodology can help water uti-
lities to better understand bottlenecks in their system and avoid any unseen failures. It also provides the plat-
form for cooperation among actors in the catchment, including with farmers and industrial polluters.

To address the impact of climate change properly and assess its associated risks, it is vital to test the inte-
grated water quality-quantity model using a large number of realizations of possible climatic conditions.
Deficits in water quantity (hydrological droughts) arise from a complex interplay of natural and human fac-
tors (notably restrictions on water use as the drought develops), which, we argue, can only adequately be
addressed through stochastic simulation. Harmful water quality, in rivers during periods of low flow and
in water supply reservoirs, is also determined by complex dynamics that are partly driven by weather-related
factors including temperature and solar radiation, which also requires a coupled simulation approach. In
this study, we use a novel climate data set, called weather@home, which provides a “super ensemble” (tens
of thousands of members) of weather sequences obtained from a state-of-the-art regional climate modeling
experiment (Guillod et al., 2018). Weather sequences from weather@home contain synthetic drought events
whose severity and frequency go beyond the historical record, allowing for extensive stress testing of the sys-
tem. The weather sequences enable exploration of a range of possible climatic changes (e.g., associated with
different GHG emissions and climate sensitivities) and also a large number of stochastic realizations of a
given climate scenario (Borgomeo et al., 2014).

The aims of this paper are (i) to present a new water quality-quantity modeling approach, including reservoir
water quality modeling, for assessing the reliability of public water supplies; (ii) to assess the impact of cli-
mate and land use change scenarios on public water supply reliability, taking into account the interplay
between water quantity and water quality. We apply this methodology to the River Thames catchment, in
the South of England. We couple a hydrological model of river water quality and quantity with a water
resource system model that determines water withdrawals and a model of water quality in offline storage
reservoirs. We demonstrated an assessment of the probability of failure to meet the required reliability or
LoS in the Thames region under all combinations of the climatic and land-use scenarios.

2. Conceptual Framework

There are a variety of measures to assess a water resource system (Hashimoto et al., 1982). We used the fre-
quency of water shortages at different levels of severity and probability of exceeding LoS as reliability metrics
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(Borgomeo et al., 2014). In England, the LoS defines how rarely a water company intends to impose a given
level of restrictions on water use for various categories of water users. In our coupled modeling framework,
we consider water shortages that occur because (i) potentially harmful water quality means that the water
utility cannot use the water for public water supply and/or (ii) because extremely low river flows mean that
insufficient water may be withdrawn for public water supply. In this section, first the water quality and
quantity thresholds are defined, and then the reliability metric is presented.

2.1. Water Quality Constraints on Public Water Supplies

Poor river water quality is of concern for water utilities if it raises treatment costs or increases the probability
of treatment plant failure. High sediment load can block filters and silt reservoirs. High nutrient concentra-
tions (nitrogen and phosphorus) can cause phytoplankton blooms in rivers and reservoirs, which in turn can
clog filters, in the case of large phytoplankton types such as diatoms, or produce harmful toxins, in the case
of cyanobacteria. In the worst cases, such as when severe cyanobacteria blooms produce toxins (Falconer,
1989; Lawton & Codd, 1991), water utilities might decide not to use that water due to the impossibility of
treating it adequately to meet drinking water standards.

To quantify water quality risks for water utilities, we address two main factors that pose serious threats to
water supply in the River Thames: (i) high turbidity in the river and (ii) large algal blooms in the water sup-
ply reservoirs—noting that in the Thames system, water is stored in large offline reservoirs that are filled by
pumping from the river. With the aim of modeling these phenomena, we employed the INCA model (see
below) to simulate (i) suspended sediment concentration in the River Thames, as a proxy measure of turbid-
ity, and (ii) phosphorus concentration and water temperature, which determine the likelihood of the algal
blooms in water supply reservoirs. Subsequently, a set of simulations were carried out with the water
resources model WATHNET (see below) in which it was hypothesized that withdrawals from the river
would be stopped if the water quality was poor. Finally, the PROTECH model was used to simulate phyto-
plankton concentrations in the reservoir water. The proposed framework is presented in Figure 3.

According to the water utility engineers, water withdrawal from the river Thames would cease if thresholds
of phosphorus concentration, temperature, suspended sediment concentration, and reservoir total chloro-
phyll were exceeded (Thames Water, pres. comm., 2016). No objective values of these thresholds could be
found, because they respond to a variety of factors, some of which depend on local conditions and on the
expertise of the operators. In an attempt to formalize this ad hoc approach, we specify thresholds based on
engineering judgement and empirical evidence provided by the water utility and the reservoir managers.
However, these thresholds are context-specific and might not apply to other situations. This means that
the results we present cannot be extrapolated to other catchments or other water resources systems.
Nonetheless, our methodological framework is flexible, so could readily accommodate other water quality
thresholds that apply in other contexts. The thresholds employed in this paper, above which water use is
assumed to be interrupted, are the following:

1. Potential high river turbidity: suspended sediment concentration above 90 mg/L;
2. Potential algal bloom in river: phosphorus concentration above 0.8 mg/L and temperature above 15 °C;
3. Potential deteriorated reservoir quality: reservoir total chlorophyll above 40 mg/m?.

The analysis explored the frequency with which there would be restrictions on public water supply given
these water quality constraints combined with regulatory constraints on the quantity of river water withdra-
wals. This was compared with the reliability of public water supplies estimated just considering regulatory
constraints on the quantity of water withdrawals during droughts. Multiple simulations were used to esti-
mate the probability of not meeting the LoS (Borgomeo et al., 2014). Land-use and water treatment scenarios
were also implemented, with the aim of understanding the potential impacts of these measures on the risk
water shortages due to inadequate water quality.

2.2. Water Shortages

To mitigate shortages, water utilities either augment their supply sources or reduce their demand by emer-
gency demand reduction strategies. Water utilities may impose different levels of restrictions on their custo-
mers' use of water if the reservoir storage level is below specific thresholds. Table 1 presents the different
categories of restrictions that may be adopted for Thames Water (Thames Water, 2014a), the largest water
company in the UK, operating in Southern England and serving around 15 million customers. Thames
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Table 1

Levels of Service (LoS), Typical Targets (Which Vary Between Water Companies), Demand Reduction Measures Associated With This LoS, Expected Reductions in
Water Use Due to Demand Reduction Measures

Level of Service (LoS) for Target frequency (no more Demand reduction measures Expected reduction in water use due to
restriction level i (LOS;) frequent than this target) for domestic customers demand reduction measures (cumulative; %)
Level 1 1 year in 5 on average Publicity about drought 2.2

Level 2 1 year in 10 on average Partial hosepipe ban 9.1

Level 3 1 year in 20 on average Full sprinkler hosepipe ban 13.3

Level 4 “Never” Ban all use (standpipes in streets) 31.3

Water has a target for the frequency of imposing each of these levels of restrictions, which they aim not to
exceed. This is known as the LoS. In this study, we employed the LoS as a target reliability threshold for
the public water supply system and seek to quantify the conditions under which the LoS is not likely to
be met.

Temporary Use Bans (Level 2) includes forbidding use of sprinklers and unattended hosepipes, while Level 3
introduces a wide range of water use limitations for business water users and spray irrigators. Emergency
measures, such as cutting off household water supplies, so people have to collect water from taps in the street
(sometimes known as “standpipes”) or from water tanker trucks, may be used in the most severe drought
and water shortage.

The timing of imposing restrictions is dependent upon the quantity of stored water for public water supply.
In Figure 1 the lower Thames Control Diagram is presented, which regulates water withdrawals from the
Thames basin. This graph is based on an agreement between Thames Water and the Environment
Agency (the environmental regulator). The horizontal axis shows the months in a year, and the vertical axis
shows the total Lower Thames Storage in megaliters (ML), which is the total capacity of reservoirs on the
Lower part of Thames for each month. The combination of the storage and river flow determines the asso-
ciated level of restriction (if any) for that month.

2.3. System Reliability Measure

Following Borgomeo et al. (2014), we use the probability of exceeding LoS as a metric of system reliability.
The probability defines for a given system configuration and climate/land use scenario, how likely it is those
water users’ expectations will not be met by the water utility. This metric does not explicitly quantify the con-
sequences of water shortages, but the tolerability of shortages of given severity for water users (see Table 1) is
implicit in the LoS.

Lower Thames Control Diagram
Teddington Target Flow Matrix
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Figure 1. Lower Thames Control Diagram (LTCD), which is a function of reservoir storage and month of the year. Levels
of Service and associated restrictions (see Table 1) are imposed based on the dotted lines. Required river flows are depicted
by the shading (Thames Water, 2014a).
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Frequency

A Monte Carlo simulation method is employed for the reliability assess-
1 ment. The water resource system model is run with the time series of
inflows subject to future demand growth, climate scenarios, and land-
use changes. Then, for each simulation k and for each year ¢, we record
the number of times a water restriction of severity R; occurs, where i
denotes the level of restrictions. The water resource system is run for S;:
1 k =1, ..., m number of simulations to estimate the frequency f (R;, ) of
a demand restrictions of severity R; in each year t. This frequency is esti-
mated by dividing the number of simulations in which R; happened in
i year t by total number of simulations.

A Running the water resources system model for a set of n realizations of

L
0 0.05

Annual frequency of L2 water restrictions imposed on demand

015 0.2 025 each climate and land-use scenarios produces a histogram of the fre-
quency f (R;, t) of restrictions of severity R;. Figure 2 presents an example

Figure 2. Typical from a large ensemble of water resource model simula-  Of @ typical distribution for the frequency of restrictions. The black vertical
tions presenting a histogram of the annual frequency of restrictions of line in Figure 2 represents LoS for the given level of restrictions; for
severity R,. The solid vertical line shows the Level of Service target for instance, it is 0.1 for LoS,. The probability of exceeding the LoS is esti-

restrictions of severity R,. The ratio of the hatched area to the nonhatched
area is an estimate of the probability of exceeding LoS,

mated as the proportion of simulated instances that exceeds LoS; (the
dashed area in Figure 2).

In this study, in addition to the measures that determine system reliability with respect to water quantity
(described above, following Borgomeo et al., 2014), we also impose quality-related constraints on water with-
drawals and treatment of reservoir water, as described in section 2.1.

3. Models

In this section the water quantity and quality models employed in this study are presented. The water
resources model simulates the river flows, reservoir operation, and demands. Two water quality models
are applied, respectively, for river and reservoir water quality.

3.1. Water Resource System

Simulation models are used widely to simulate the behavior of the water resource systems for a given set of
input conditions. These models can be generally categorized into two groups, namely reservoir-system-
simulation models and system-analysis models (Labadie, 2004; Wurbs, 1993). System-analysis models are
based on network-flow programming, which has been applied in a variety of operations research and sys-
tems engineering applications. These models represent the main entities within the water resource system
as a set of nodes and arcs, with the nodes representing source, storage, demand, or transfer points and the
arcs representing streams or pipes.

There exist a number of generalized models based on network-flow programming, and in this study, the
WATHNET simulation model (Kuczera, 1992) is employed. WATHNET was selected for the following rea-
sons: (1) the efficient computation time and capability of running on parallel nodes; (2) the availability of the
source code allowed for its adaptation to the new requirements of this study; (3) the scripting feature that
facilitates introducing any rules or constraints; and (4) its architecture facilitates the implementation of
multi-objective optimization and handling optionality. WATHNET has been successfully used in many stu-
dies of water supply systems (Borgomeo et al., 2016; Mortazavi-Naeini et al., 2014; Mortazavi-Naeini et al.,
2015; Mortazavi et al., 2012).

3.2. Surface Water Quality Model

The INCA hydrological and water quality model was used to simulate the water, sediment, and phosphorus
cycle of the River Thames. The INCA model was originally a nitrogen (Whitehead et al., 1998) and phos-
phorus (Wade, Whitehead, & Butterfield, 2002) model. Several submodels have subsequently been added,
including soil erosion and sediment transport (Lazar et al., 2010). In this study, the phosphorus version of
INCA (INCA-P) was employed, which also includes the sediment submodel. The INCA suite of models
has already been applied to various basins across the UK and Europe (Wade et al., 2004). The INCA model
is semidistributed and process-based, reproducing the rainfall-runoff transformation and river routing using
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simple mass-balance first-order differential equations (Wade, Durand, et al., 2002). It is driven by a series of
precipitation, temperature, hydrologically effective rainfall, and soil moisture deficit. The hydrologically
effective rainfall and soil moisture deficit are estimated using another semidistributed hydrological model,
called PERSIST (Futter et al., 2014). PERSIST uses a temperature-based method to compute the evapotran-
spiration, and it computes the soil moisture through a balance between net rainfall, evapotranspiration,
infiltration, percolation, and subsuperficial flow. The sediment submodel of INCA has been presented in
several sediment-focused papers (Jarritt & Lawrence, 2007; Lazar et al., 2010; Rankinen et al., 2010). It is also
a component of the phosphorus, carbon, pathogen, and organic contaminant versions of the INCA model,
due to absorption processes and interaction with bed sediments (Crossman et al., 2013; Futter et al., 2007;
Lu et al., 2016; Nizzetto et al., 2016; Wade, Whitehead, & Butterfield, 2002; Whitehead et al., 2016). A
sensitivity/uncertainty analysis of its structure and parameters can be found in Jackson-Blake and
Starrfelt (2015).

The phosphorus submodel of INCA (Wade, Whitehead, & Butterfield, 2002) reproduces hillslope and river
channel phosphorus dynamics. This submodel also uses a semidistributed representation, thus accounting
for the impacts of different management practices, such as fertilizer application and wastewater discharge.
The model equations are divided into two main parts: land phase and in-stream. The land phase submodel is
a simplified representation of the soil processes that involve phosphorus, including mineralization, micro-
bial decomposition, immobilization, plant uptake, and conversion of readily available phosphorus to firmly
bound and vice versa. The in-stream submodel routes water and phosphorus downstream.
Sorption/desorption and interactions with bed sediment are also taken into account. INCA-P simulates
organic and inorganic phosphorus concentrations in soils and total phosphorus (dissolved plus particulate
phosphorus) concentration in the river channel flow. Stream water temperature is modeled as a linear func-
tion of the air temperature.

3.3. Reservoir Water Quality Model

The PROTECH model was used to estimate the growth of phytoplankton in the catchment's reservoirs.
PROTECH (Phytoplankton RespOnses To Environmental CHange) is a process-based phytoplankton
reservoir/lake community model that has been used for nearly 20 years (see Elliott et al., 2010; Reynolds
et al., 2001). It simulates the daily growth of several phytoplankton species throughout a 1-D vertical water
column in response to changing environmental conditions such as light, temperature, and
nutrient availability.

For each species, its growth is expressed as the daily change in the chlorophyll a concentration (AX/At):
AX /At = (r'=S—G—D)X 1)

where 7’ is the growth rate defined as the increase over 24 hr, S is the loss due to settling out from the water
column, G is the loss due to zooplankton grazing, and D is the loss due to dilution caused by hydraulic
exchange. The growth rate (') is further defined by the following:

r =min(r g, r'p, F'N, 'si) 2

where r’(g py is the growth rate at a given water temperature and light level and r'p, 'y, and r'g; are the growth
rate limitations determined by phosphorus, nitrogen, and silicon concentrations that fall below these respec-
tive threshold concentrations: <3, 80, and 500 mg/m3 (Reynolds, 2006). The r’ values are phytoplankton-
dependent, relating to their morphology and nutrient demands.

In this study, a response equation was estimated based on multiple simulations of the PROTECH model to
predict the chlorophyll concentration given certain key drivers. To this end, PROTECH was driven using 100
weather@home climatic scenarios over three time periods (baseline: 1975-2004, near future: 2020-2049,
and far future: 2070-2099) and coupled with the corresponding nutrient values from the INCA models at
the reservoir withdrawal point in the Thames river. In addition, the predicted reservoir water balance from
WATHNET was used, which provided a large range of reservoir water levels. In total, this gave 3,287,400
days of predicted chlorophyll values.

Initially, the following independent variables were examined: river P concentration, river temperature, and
reservoir depth. This examination showed that river P concentration and the predicted chlorophyll were not
normally distributed, and thus, they were log transformed.
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Figure 3. Flowchart of data and model sequence, showing interactions between water qulaity (INCA) and water quantity
(WATHNET) model, to calculate model outputs in terms of frequency of imposed restrictions on water use for each level of
service.

Several different quadratic equations were tested using these drivers, and their residual sum of squares in
combination with their Akaike information criterion were analyzed using R (R Core Team, 2017). The for-
mer assesses the goodness of fit of the equation while the latter judges the quality of the model. The analysis
suggested that the equation below was the best for balancing its goodness of fit (R* = 0.56, p < 0.001) with
model complexity:

InChl = —0.5643 + 0.5845XInPriver—0.04748XZ + 0.09266X Triver (3)

where Chl is the reservoir total chlorophyll (mg/m3), PRiver is the river P concentration (mg/m3 ), Z is the
reservoir depth (m), and Tyiyer iS the river temperature (°C).

4. Modeling Strategy

The flowchart in Figure 3 presents the interaction between the water resource model (WATHNET), the
water quality model (INCA), and the reservoir model (PROTECH). First, we run the INCA model to produce
river flows driven by precipitation and temperature data. The river flows are then passed to WATHNET to
simulate water withdrawals and allocations. INCA is then rerun to calculate the water quality at each
abstraction point, this time also using abstraction data provided by WATHNET. This is done because water
abstraction (i.e., reduction in the quantity of water in the river) can alter significantly the water quality just
downstream of the abstraction point. Finally, the water quality results from INCA are passed to WATHNET
and PROTECH and used as constraints on water abstractions; that is, when the water quality does not meet
certain criteria (water quality restrictions), abstractions are stopped. WATHNET calculates the frequency of
imposed restrictions on water use for each level of restrictions, for two scenarios: (i) just considering water
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quantity (as in previous assessments) and (ii) also considering the water quality (consists of river and reser-
voir water quality) criteria presented in section 2.1.

The same workflow is repeated for three proposed climatic scenarios (section 5.1) and three land use scenar-
ios (section 5.2).

5. Scenarios

The system of models outlined in the previous section was used to explore the risk of water shortages and
harmful water quality impacting the reliability of public water supplies under a range of climate and land
use scenarios. In this section we present these scenarios.

5.1. Climate Scenarios

A number of previous studies have examined the impacts of climate change on water resources in the
Thames Basin (Borgomeo et al., 2014; Fung et al., 2013; Manning et al., 2009; Wilby & Harris, 2006). Most
recent studies have used probabilistic outputs from the UKCP09 scenarios (Murphy et al., 2009). Here we
employ a more recent large ensemble of climate model projections based on the same climate models as
UKCP09 (HadCM3 and HadRM3) but with a much larger number of realizations, using the weather@home
system (Guillod et al., 2018; Massey et al., 2015). Weather@home uses an atmospheric global climate model
and a regional climate model sharing essentially the same physics, which are run on volunteers' computers
around the world using the infrastructure of climateprediction.ne (Guillod et al., 2018). The freely-running
atmospheric global climate model (HadAM3P), driven by sea surface temperature and sea ice boundary con-
ditions that reflect long-term warming effects, is downscaled at 25 km over Europe by the regional climate
model (HadRM3P). Version 2 of weather@home (Guillod et al., 2018), used in these simulations, includes an
improved land surface scheme to better represent the long memory effects of soil moisture during droughts.

Long continuous times series were generated for the UK over three periods, namely the recent past (1900-
2006, out of which 1975-2004 form a baseline, hereafter BS), the near future (2020-2049, NF) and the far
future (2070-2099, FF). The algorithm for concatenating year-long simulations (Guillod et al., 2018) avoids
discontinuities in soil moisture, which is the main source of memory in the simulations given sea ocean state
(sea surface temperatures, sea ice). For the future time periods (NF and FF), five scenarios are provided that
sample climate model uncertainty with respect to future changes in the ocean state (Guillod et al., 2018). In
this study, the central scenario is used, which is based on the median ocean warming pattern for RCP8.5
derived from CMIP5 coupled Atmosphere-Ocean General Circulation Model outputs (Taylor et al., 2012).
A total of 100 time series were available for each time period (BS, NF, and dFF) and represent 100 different
trajectories of weather patterns that are consistent with the anthropogenic and natural drivers. The time ser-
ies have been validated and performed well for all variables, with the exception of summer precipitation that
has been bias-corrected using monthly linear bias correction factors. In particular, long dry sequences have
been shown to be well represented in the time series (Guillod et al., 2018). Figure 4 shows the monthly pre-
cipitation and temperature projections for the River Thames catchment for the BS, NF, and FF
climate scenarios.

5.2. Land-Use Scenarios

To assess the impacts of land use and land management on the water quality, three scenarios were defined:
(i) LU-baseline: current land use; (ii) LU-future: future land use, that is, expansion of agricultural land due to
increased food demand; and (iii) LU-future + mitigation: future land use with enhanced phosphorus mitiga-
tion strategies. These scenarios are consistent with the ones used in Bussi, Whitehead, et al. (2016). The
future land use scenario (ii) describes an increase in agricultural land area. The scenario represents a situa-
tion in which food security is a dominant driving force for land use change. The land allocation and crop
arrangement were quantified using the land cover model LandSFACTS (Castellazzi et al., 2010) with a cor-
responding reduction in grassland and forest land fractions. For the case study reported here, this land-use
scenario shifts land use from an almost equal proportion of arable land and grassland to double arable land
at the expenses of forest land and grassland. The future land use scenario and mitigations strategy (iii) define
a situation where the agricultural land expands but with reduction of fertilizer use and phosphorus removal
from wastewater. Crossman et al. (2013) and Whitehead et al. (2013) demonstrated that this strategy is the
most effective one for the control of phosphorus concentrations in the River Thames. The phosphorus
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Figure 4. Monthly average values of precipitation, raw and bias-corrected, and temperature projections for the River
Thames catchment, for baseline, near future (NF), and far future (FF) climate scenarios. Where indicated, the series
represent the weather@home outcome before bias correction.

mitigation strategy incorporated a 20% reduction in the fertilizer application rates and applying a limit of 0.3
mg/L of total phosphorus in wastewater discharge from sewage treatment works. More details about the
model parameterization for land use and management impact analysis in the River Thames can be found
in Crossman et al. (2013), Bussi, Dadson, et al. (2016), and Bussi, Whitehead, et al. (2016).

6. Case Study
6.1. Background

Water resources management plans in England and Wales are developed at water resource zone level
(WRZ). A WRZ is defined as an area where water users experience the same level of water shortages
(Environment Agency, 2012). All Thames Water WRZs are used in this study as shown by green colored
areas in Figure 5. The Thames Water supply area comprises six WRZs: London, SWOX (Swindon and
Oxford), Henley, Kennet Valley, SWA (Slough, Wycombe, and Aylesbury) and Guildford.

The London WRZ is the most populated area in the country, with around 7 million water users. The primary
source of water for the London WRZ is surface water abstractions from River Thames and River Lee, directly
or via pump to storages. The river abstractions provide about 80% of demand, and the remainder is supplied
by groundwater abstractions. The other five WRZs supply water to 2.1 million people, and their source is
mainly from groundwater, which is supported by surface water abstractions and storages in the upper
River Thames (Thames Water, 2014a).

The population in the region has increased in the last decade, and it is expected to increase in the future. A
fixed rate of 0.5% annual demand growth was assumed for London for the future scenarios analyzed in this
study (Borgomeo et al., 2016).

6.2. Hydrology and Water Quality Validation

The INCA model has been calibrated and validated for the River Thames in several previous studies (Bussi,
Dadson, et al., 2016; Bussi et al., 2017; Whitehead et al., 2013), with satisfactory model performances in terms
of reproduction of flow and nutrient concentration. In this study, for the hydrological submodel calibration
and validation, records of continuous daily water discharge at several sections of the River Thames were
obtained from the National River Flow Archive (ceh.ac.uk/data/nrfa/). The sediment and phosphorus sub-
models were calibrated using weekly observations of suspended sediment concentration and phosphorus
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Figure 5. The catchments and rivers of Thames region. The shaded areas are Thames Water water resource zones (WRZs).
Two selected reaches, numbers 4 and 19, are shown.

concentration from the Thames Initiative research platform data set (Bowes et al., 2012), collected by the UK
Centre of Ecology and Hydrology (CEH).

Sensitivity analysis (Spear & Hornberger, 1980; Whitehead et al., 2015) was used to identify the following
parameters as being the most influential on model performance: Flow parameters (direct runoff residence
time, soil water residence time, ground water residence time, threshold soil zone flow, rainfall excess propor-
tion, maximum infiltration rate, and discharge/velocity relationship coefficient and exponent), nitrate and
ammonium parameters (denitrification rate in soil and river, nitrification rate in soil and river, mineraliza-
tion rate in soil, immobilization rate in soil, fertilizer addition rate in soil, and plant uptake), phosphorus
parameters (fertilizer addition rate in soil, plant uptake, and liquid manure/fertilizer usage), and sediment
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Figure 6. INCA model calibration results for flow and phosphorus in river reaches 4 and 19. OBS is observed (black) and SIM is simulated (red). Please refer to
Bussi, Dadson, et al. (2016) for the sediment concentration calibration results.
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Figure 7. Comparison between observed (green dots) and modeled total
chlorophyll a (blue line) for Farmoor reservoir 2014.

120 parameters (splash and flow erosion parameters, transport capacity para-
< 1004 meters, entrainment, and bank erosion parameters; see Bussi, Whitehead,
E: et al., 2016, and Jackson-Blake & Starrfelt, 2015, for more details). A total
g 80 of 10,000 different sets of these parameters were generated. The parameter
E 60 - set that performed best with respect to observed flow, suspended sediment
g concentration, and total phosphorus concentration at two stations (reach
g 40 4 and reach 19), using data from October 2010 to September 2014
T‘; (Figure 6) was identified based on the Nash and Sutcliffe Efficiency
,§ 201 (NSE; Nash & Sutcliffe, 1970) and the percent bias (PBIAS; Moriasi
0 i i . . . . . et al., 2007).
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6.3. Reservoir Water Quality Model Calibration

The PROTECH model was initially calibrated using data from a reservoir
8 km west of the city of Oxford. Farmoor reservoir supplies water to the
major urban areas of Swindon and Oxford in addition to areas of north
Oxfordshire and has a maximum depth of 13 m and a total storage volume
of 1,4270 ML. To drive the simulation, meteorological data for 2014 was taken from Brize Norton metrolo-
gical station 15 km to the west. For 2014, reservoir phytoplankton abundance data were available in the form
of total chlorophyll a concentrations, and there were some qualitative data for the relative abundance of phy-
toplankton species. The latter were used to select the eight most representative types from PROTECH's phy-
toplankton library. After some minor adjustments to increase the observed relative humidity values used to
drive the simulation, the model captured reasonably well the seasonal changes in phytoplankton biomass

(R?* = 0.63; Figure 7).
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Windsor
ParkGS o1 het &
pg Queen >
Mother ~ Colne \>
Datchet Brook  \Wravehun , A
Wraysbury Rive »
Intake & RiverC o
[ Rally Coine N
4 Sunnymea, / <
Intake
% ol
[N Windsor
A Weir
% Sh':;s
2 Wraysbu King
G Intake George Staines
VI South ‘ s-Lee
Kempton Park Ted\x;ngton < Tunnel
Egham ™ “Bell Staines PS wiw i
Intake Weir Staine: Ashford Common O ’
i wTW o ’
Littleton - Queen <> HWTW Intake .~ Kingsto
Ps Mary Walton O e Gs Hogsmill
Penton |:tlk.. PS Moles River
Hoqk aleham Sunb v g
Weir Intake ey S o
Weirs Bessborough /s
Chertsey Knight
Intake River Ash e sland
Walton GS Elizabeth 1! Surbiton
Chertsey intake
Weir -
@ Thames Water Intakes Shepperton
4 . Weir Walton River Mole
A Thames Water Pumping Stations Intake
B Gauging Stations
River Wey

w—— Affinity Intakes

Figure 8. Schematic of the Lower Thames water resources system, showing Thames Water's storage reservoirs and the intakes for the neighboring water company
that also uses water from the River Thames:Affinity Water (Thames Water, 2014b).
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Figure 9. Storage levels in the Lower Thames reservoirs. Comparison of WATHNET simulations and Thames Water's
operational model for 1970-1980.

6.4. Water Resources System Validation

The Thames water resources system model was built in WATHNET which enabled running many simula-
tions in reasonable time and integration of the model with INCA model. The water resources model devel-
oped in this study is a complex model with more than 100 nodes and 200 arcs. It includes all WRZs in the
Thames region from the upper Thames to lower Thames (i.e., London). The computation time of the model
for 30 years of daily time step simulation on a 3.40-GHz desktop PC is around 140 s. Figure 8 shows a sche-
matic of the water resource system in the Lower Thames.

As observed reservoir levels were not available, validation of WATHNET was achieved by comparison with
storage levels obtained by Thames Water's operational model (WARMS2) using the same input data (daily
inflows from 1920 to 2010). Figure 9 presents the storage level of both models for the 1970-1980 periods.
The figure indicates that WATHNET effectively reproduces the storages levels in WARMS2 model (Nash
and Sutcliffe Efficiency (NSE) = 0.98 and percent bias (PBIAS) = 0.2). To better understand the compatibility
of two models, in Figure 10 the cumulative probability of Lower Thames storages are compared. As the fig-
ure shows, two models performed similarly, with WATHNET slightly underestimating storage volumes
below 15,000 ML and slightly overestimating storage levels above 15,000 ML.

7. Results
7.1. Water Quality Scenarios

The monthly average results of the INCA model can be seen in Figure 11. Here the monthly averages of flow,
suspended sediment, and total phosphorus concentration resulting from the INCA model driven by the
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Figure 10. Storage levels in the Lower Thames reservoirs. Comparison of WATHNET and Thames Water's operational
model (WARMS2) for cumulative probability of Lower Thames storage.
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Figure 11. Monthly averages of flow, suspended sediment concentration, and total phosphorus concentration for the Lower Thames (reach 19), computed with the
INCA model under the weather@home climatic scenarios over three time slices (baseline: 1975-2004, near future: 2020-2049, and far future: 2070-2099) and under
three different scenarios of land use: baseline, future, and future with water quality mitigation actions.

weather@home climate data are shown for the Lower Thames, for the three time horizons (baseline: 1975-
2004; near future: 2020-2049; far future: 2070-2099) and for all three land use scenarios (current land use,
expansion of agriculture, combined reduction of fertilizer use, and phosphorus stripping from wastewater).
It can be observed that climate change is expected to reduce summer flows and consequently also the sus-
pended sediment concentration, although an increase in suspended sediment concentration is predicted
to occur in some scenarios of the far future due to an increase in extreme winter floods. Total phosphorus
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Figure 12. Impact of climate change scenarios on probability of exceeding LoS, just considering water quantity. The vertical lines represent the Thames Water's LoS

for each level of restrictions. LoS = Level of Service, BL = baseline, NF = near future, FF = far future.
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Table 2

Probability of Exceeding LoS for Four Levels of Restrictions With and Without
Water Quality Limitations for the Baseline, Near Future, and Far Future
Time Horizons

Probability of LoS exceedance

Climate

scenarios WQQ scenarios LoS; LoS, LoS3 LoSy

BL WQ-with RQ 0.84 0.66 0.46 0.3
WQ-without RQ 0.24 0.1 0.065 0.03
NO WQ 0.18 0.07 0.025 0

NF WQ-with RQ 1 0.96 0.92 0.45
WQ-without RQ 0.78 0.5 0.345 0.19
NO WQ 0.57 0.34 0.115 0.08

FF WQ-with RQ 1 1 1 0.96
WQ-without RQ 1 1 0.985 0.72
NO WQ 0.99 0.96 0.75 0.22

Note. WQQ = water quality-quantity, WQ = water quality, RQ = reservoir
water quality limits, LoS = level of service, BL = baseline, NF = near
future, FF = far future.

Table 3

Impacts of Land-Use Change Scenarios on the Probability of Exceeding the
Four Levels of Service and for Three Climate Change Scenarios for the
Three Time Horizons—With and Without Reservoir Water Quality

Probability of LoS
exceedance
wQQ Climate Land use
scenarios scenarios scenarios LoS; LoS; LoS; LoSy
WQ- BL LU-baseline 024 0.1 0.065 0.03
without LU-future 025 0.15 0.095 0.06
RQ LU-future + 017 0.07 0.035 0.03
mitigation
NF LU-baseline 0.78 0.5 0.345 0.19
LU-future 081 065 0.5 0.29
LU-future + 0.71 036 0.13 0.1
mitigation
FF LU-baseline 1 1 0.985 0.72
LU-future 1 1 1 0.83
LU-future + 1 097 0.785 0.23
mitigation
WQ-with  BL LU-baseline 0.84 066 046 0.3
RQ LU-future 0.83 0.66 0445 03
LU-future + 0.79 064 0435 0.3
mitigation
NF LU-baseline 1 096 0.92 045
LU-future 1 096 0.92 049
LU-future 4+ 099 095 0.9 0.47
mitigation
FF LU-baseline 1 1 1 0.96
LU-future 1 1 1 0.96
LU-future + 1 1 1 0.94
mitigation

Note. WQQ = water quality-quantity, WQ = water quality, RQ = reservoir
water quality limits, LoS = level of service, BL = baseline, NF = near
future, FF = far future.

is expected to increase, especially during low flows, due to the reduced
dilution capacity of the river. Land-use change is not expected to have a
substantial impact on flows, as observed by Crooks and Davies (2001).
However, an increase in agricultural land is expected to increase soil ero-
sion and thus suspended sediment concentration (Bussi, Dadson, et al.,
2016), as well as the total phosphorus concentration. For the mitigation
scenario, the combined reduction of phosphorus from diffuse and point
sources is expected to decrease dramatically the concentration of phos-
phorus in the River Thames, as pointed out by Bussi, Whitehead, et al.
(2016), Crossman et al. (2013), and Whitehead et al. (2013), especially
because of the strong reduction of the phosphorus inputs from sewage
treatment works, which are the main source of phosphorus pollution in
the lower Thames (Bowes et al., 2014). A residual P concentration of
around 0.1 mg/L is expected to be found in the river, mainly due to atmo-
spheric deposition and fertilizers. However, it must be noted that this is an
ideal scenario where P stripping is implemented extensively, efficiently,
and on all sewage treatment works. While the likelihood of this scenario
is unknown a priori, these findings illustrate that a strategy consisting in
extensive P reduction in wastewater can be effective in mitigating the
negative impacts of climate change on river water quality.

7.2. Water Quantity

Figure 12 presents the impact of climate change on water availability for
use by Thames Water for public water supply. The graph shows the prob-
ability of imposing the four levels of restrictions for three climate change
scenarios with and without demand growth. The vertical lines represent
the Thames Water's LoS for each level of restrictions. For instance, the
first right-hand side vertical line is presenting LoS for level 1 of restrictions
(LoS;), which is 1 in 5 years or 0.2. There is no vertical line representing
LoS,, which represents Thames Water's current target to never impose
level 4 restrictions.

Figure 12 shows that the probability of exceeding LoS increases in time. In
the case of constant demand (no demand growth), for LoS; the probability
of not meeting LoS for BL is 2% and for NF is 20% while the probability of
exceeding LoS in FF scenario is more than 90%. LoS, and LoS; are satis-
fied for BL scenarios but not for NF and FF scenarios. The probability of
exceeding LoS, in FF scenario is about 2%, which means LoS, was not
met for this scenario.

Increasing water demand puts more pressure on the system, so the prob-
ability of failing to meet target LoS increases. In Figure 12 the probability
of exceeding LoS for each level of restrictions are presented in the pre-
sence of demand growth. In this case none of the scenarios could meet
LoS except LoS, for the BL scenario.

7.3. Water Quality

We first compared the results with and without water quality limitations
on water withdrawals. We ran the WATHNET model with and without
reservoir water quality limits, which we called “WQ-with RQ” and
“WQ-without RQ,” respectively. In Table 2 the probability of exceeding
LosS for each of the climate and water quality scenarios are presented. In
all the scenarios, having water quality limitations in place increased the
likelihood of exceeding the LoS. This means if the water quality is not con-
sidered, then the probability of LoS exceedance is underestimated. As we
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move toward future scenarios, the possible constraints on abstractions due to adverse water quality
increases, relative to the case in which just water quantity is considered. The effect on the probability of
LoS exceedance of including reservoir water quality (WQ-with RQ) is greater than the effect of just consider-
ing river water quality. For the water quality criteria used here, the effect of incorporating water quality
(both in-river and in-reservoir) in the analysis is of the same order as the projected effect of climate change.
This again highlights the possibility of underestimated probability of LoS exceedance without having inte-
grated water quality model, which not only models river quality but also reservoir quality.

Table 3 demonstrates the impacts of land-use change scenarios on the probability of imposing restrictions for
three climate change scenarios. When reservoir water quality is excluded (WQ-without RQ), the results
show that the LU-future + mitigation scenario performed better than LU-baseline, while the LU-future is
worse than the LU-baseline. These results indicate that phosphorous removal from the discharges of
upstream wastewater treatment works together with agricultural practices that use less fertilizer can have
a large impact on water quality, which may potentially impact on the reliability of supplies to water users
in the Thames region. The potential impact of water quality constraints in water withdrawals becomes
greater for NF and FF scenarios as there are larger gaps between LU-future + mitigation and LU-future
or LU-baseline in these climate change scenarios, especially for L3 and L4 of restrictions. However, the land
use mitigation scenario is not sufficient to recover from the projected effects of climate change, even in the
near future (NF).

When the reservoir water quality is included, the results in Table 3 show that the probability of LoS
exceedance increases for NF and FF climate scenarios compared to the BL scenario. However, in this case
there is less to differentiate among the three land-use scenarios compared to the results of WQ-without
RQ especially for NF and FF climate scenarios. This indicates that consideration of reservoir water quality
reduces sensitivity to land-use changes, as the reservoir water quality dominates the system reliability, yet
it is not sensitive to suspended concentrations in the river, which is one of the main impacts of land
use change.

8. Conclusion

Traditionally, water resources managers have made decisions primarily based on the availability of water,
though they have recognized the risk that harmful water quality poses to public water supplies. In this paper,
we have proposed an integrated water quality-quantity framework to assess the reliability of water supplies.
The framework incorporated stochastic simulation of river and reservoir water quality models, coupled with
a water resource system model. A novel large ensemble of climate model simulations was used to investigate
climatic influences upon water quantity and quality, in the catchment and in storage reservoirs. The impact
of weather conditions on water demand has not been incorporated in this study.

We tested the proposed method on Thames region using water demand, climate, and land-use change sce-
narios. The results indicate a reduction in the reliability of water supplies, that is, an increase in the probabil-
ity of failing to meet the target LoS, by up to 54% for near future scenarios and up to 83% for far future
scenarios. This result applies to the current water supply system configurations and does not account for
planned interventions in supply and demand, which are expected to be implemented in order to secure
water supplies in the future. The presented probabilities have been estimated based on 100 realizations for
each climate scenario. For more accurate probability estimates, the number of scenarios should be increased.
Our results are also contingent upon the water quality criteria that determine the usability of river and reser-
voir water for public water supplies. Unlike the quantity of water abstractions, which are regulated accord-
ing to transparent rules, water quality criteria tend to be based upon local practices and considerations at
individual water treatment works that are not clearly articulated.

Having water quality limitations on river water abstractions is predicted to reduce reliability of public water
supplies. Considering the possibility of high phytoplankton concentrations in storage reservoirs further
reduced the estimated system reliability. Possible changes in land use and agricultural practices could
exacerbate (in the case of agricultural intensification) or mitigate (in the case of more sensitive agricultural
practices and improved waste water treatment) the risk of water quality impacts on the reliability of public
water supplies. However, the mitigation effect of pollution abatement was found to be small when compared
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to the projected effect of climate change and was not as significant when reservoir water quality was also
included in the reliability analysis.

Building upon the work of Hashimoto et al. (1982) and subsequently Borgomeo et al. (2014), our method has
focused upon the frequency and severity of restrictions on water use as an outcome measure of the perfor-
mance of water resource systems. We have extended previous work on risk-based analysis of water resource
systems to incorporate water-quality related restrictions on public water supplies. In doing so, we have had
to construct a coupled simulation framework that deals with the dynamic interactions between water quality
and quantity in the context of active human management of the water resource system. We regard this inno-
vation as being a next step in the development of risk-based methods for the sustainable management of
coupled human and natural systems.
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