68 research outputs found

    Symbiotic N2 fixation by soybean in organic and conventional cropping systems

    Get PDF
    In organic cropping systems nitrogen (N) often limits agricultural production. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. We investigated N2 fixation of soybean in conventional and organic cropping systems. The study was carried out on a long term field experiment, characterized by unequal fertilization rates and soil microbial activity for the different systems. We assessed the proportion of N derived from atmosphere (Ndfa) and the total amount of N symbiotically fixed (Nfix) using the 15N natural abundance method. Ndfa for soybean was low, ranging from 24 to 54%. The lowest Ndfa was reported for the exclusively mineral fertilized, and the highest for the bio-organic cropping system. However, there were no differences between the farming systems in total amount of N symbiotically fixed. Irrespective of the cropping system, N withdrawal by harvest was higher than N input by N2 fixation, meaning that soil N stock was not preserved

    Stickstoffausnutzungseffizienz von 15N-markierter Schafsgülle und 15N-markiertem Mineraldünger in biologisch und konventionell bewirtschafteten Anbausystemen

    Get PDF
    Nitrogen (N) utilisation by crops has to be improved to minimize losses to the environment. We investigated N use efficiency of animal manure and mineral fertiliser and fate of fertiliser N not taken up by crops in a bio-organic (BIOORG) and a conventional (CONMIN) cropping system of a long-term experiment over three vegetation periods (wheat-soybean-maize). Microplots received a single application of 15N-labelled slurries or mineral fertiliser. At the end of each vegetation period we tested whether higher microbial activity and biomass in BIOORG than CONMIN soils and lower long-term N input level in BIOORG affected use efficiency and fate of fertiliser N not taken up by crops. In total 41%, 15% and 50% of 15N applied as urine, faeces and mineral fertiliser was recovered by the three crops. 15N recovered from originally applied urine, faeces and mineral fertiliser in the topsoil at the end of the third vegetation period was 19%, 25% and 20%, respectively. Of urine-, faeces- and mineral fertiliser-15N 40%, 61% and 29% was not recovered by the three crops and in topsoil suggesting significant transport of 15N-labelled components to deeper soil layers. BIOORG and CONMIN differed neither in fertiliser N use efficiency by crops nor in 15N recovery in soil indicating insignificant differences in turnover and utilization of applied manure N in the bio-organic and conventional cropping system

    Stickstoffbilanzen in biologischen und konventionellen Anbausystemen Das Effizienz-Nachhaltigkeits-Dilemma

    Get PDF
    N-balances over 35 years from the DOK trial are presented and combined with Nstock changes in DOK treatments on different fertilisation levels. Results strongly indicate an N efficiency-sustainability dilemma: DOK treatments with a high nitrogen use efficiency (NUE) lose more soil stock N than those with a lower NUE but higher N losses from the system. The biodynamic system showed little advantage in terms of soil N stocks sustainability while the solely mineral fertilised conventional treatment had highest NUE across all inputs including soil N change

    Impaired oxidative stress response characterizes HUWE1-promoted X-linked intellectual disability.

    Get PDF
    Mutations in the HECT, UBA and WWE domain-containing 1 (HUWE1) E3 ubiquitin ligase cause neurodevelopmental disorder X-linked intellectual disability (XLID). HUWE1 regulates essential processes such as genome integrity maintenance. Alterations in the genome integrity and accumulation of mutations have been tightly associated with the onset of neurodevelopmental disorders. Though HUWE1 mutations are clearly implicated in XLID and HUWE1 regulatory functions well explored, currently much is unknown about the molecular basis of HUWE1-promoted XLID. Here we showed that the HUWE1 expression is altered and mutation frequency increased in three different XLID individual (HUWE1 p.R2981H, p.R4187C and HUWE1 duplication) cell lines. The effect was most prominent in HUWE1 p.R4187C XLID cells and was accompanied with decreased DNA repair capacity and hypersensitivity to oxidative stress. Analysis of HUWE1 substrates revealed XLID-specific down-regulation of oxidative stress response DNA polymerase (Pol) λ caused by hyperactive HUWE1 p.R4187C. The subsequent restoration of Polλ levels counteracted the oxidative hypersensitivity. The observed alterations in the genome integrity maintenance may be particularly relevant in the cortical progenitor zones of human brain, as suggested by HUWE1 immunofluorescence analysis of cerebral organoids. These results provide evidence that impairments of the fundamental cellular processes, like genome integrity maintenance, characterize HUWE1-promoted XLID

    Understandings of sustainable corporate governance by Australian managed investment schemes and some implications for small-scale forestry in Australia

    Get PDF
    This study reveals that managers of Australian managed investment schemes understand sustainable corporate governance as a mix of financial, natural environment and social outcomes. The managers that were interviewed prioritized financial aspects of business performance but acknowledged that sustained financial performance was only possible if positive natural environment outcomes and positive social outcomes were also sustained. In this context, the managers expressed qualified support for the development of small-scale forestry in Australia

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)

    C-Terminal Region of EBNA-2 Determines the Superior Transforming Ability of Type 1 Epstein-Barr Virus by Enhanced Gene Regulation of LMP-1 and CXCR7

    Get PDF
    Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer
    corecore