1,179 research outputs found

    Tapering practices of strongman athletes: Test-retest reliability study

    Get PDF
    BACKGROUND: Little is currently known about the tapering practices of strongman athletes. We have developed an Internet-based comprehensive self-report questionnaire examining the training and tapering practices of strongman athletes. OBJECTIVE: The objective of this study was to document the test-retest reliability of questions associated with the Internet-based comprehensive self-report questionnaire on the tapering practices of strongman athletes. The information will provide insight on the reliability and usefulness of the online questionnaire for use with strongman athletes. METHODS: Invitations to complete an Internet questionnaire were sent via Facebook Messenger to identified strongman athletes. The survey consisted of four main areas of inquiry, including demographics and background information, training practices, tapering, and tapering practices. Of the 454 athletes that completed the survey over the 8-week period, 130 athletes responded on Facebook Messenger indicating that they intended to complete, or had completed, the survey. These participants were asked if they could complete the online questionnaire a second time for a test-retest reliability analysis. Sixty-four athletes (mean age 33.3 years, standard deviation [SD] 7.7; mean height 178.2 cm, SD 11.0; mean body mass 103.7 kg, SD 24.8) accepted this invitation and completed the survey for the second time after a minimum 7-day period from the date of their first completion. Agreement between athlete responses was measured using intraclass correlation coefficients (ICCs) and kappa statistics. Confidence intervals (at 95%) were reported for all measures and significance was set at P<.05. RESULTS: Test-retest reliability for demographic and training practices items were significant (P<.001) and showed excellent (ICC range=.84 to .98) and fair to almost perfect agreement (κ range=.37-.85). Moderate to excellent agreements (ICC range=.56-.84; P<.01) were observed for all tapering practice measures except for the number of days athletes started their usual taper before a strongman competition (ICC=.30). When the number of days were categorized with additional analyses, moderate reliability was observed (κ=.43; <.001). Fair to substantial agreement was observed for the majority of tapering practices measures (κrange=.38-.73; P<.001) except for how training frequency (κ=.26) and the percentage and type of resistance training performed, which changed in the taper (κ=.20). Good to excellent agreement (ICC=.62-.93; P<.05) was observed for items relating to strongman events and traditional exercises performed during the taper. Only the time at which the Farmer's Walk was last performed before competition showed poor reliability (ICC=.27). CONCLUSIONS: We have developed a low cost, self-reported, online retrospective questionnaire, which provided stable and reliable answers for most of the demographic, training, and tapering practice questions. The results of this study support the inferences drawn from the Tapering Practices of Strongman Athletes Stud

    Preparation of large biological samples for high-resolution, hierarchical, synchrotron phase-contrast tomography with multimodal imaging compatibility

    Get PDF
    Imaging across different scales is essential for understanding healthy organ morphology and pathophysiological changes. The macro- and microscale three-dimensional morphology of large samples, including intact human organs, is possible with X-ray microtomography (using laboratory or synchrotron sources). Preparation of large samples for high-resolution imaging, however, is challenging due to limitations such as sample shrinkage, insufficient contrast, movement of the sample and bubble formation during mounting or scanning. Here, we describe the preparation, stabilization, dehydration and mounting of large soft-tissue samples for X-ray microtomography. We detail the protocol applied to whole human organs and hierarchical phase-contrast tomography at the European Synchrotron Radiation Facility, yet it is applicable to a range of biological samples, including complete organisms. The protocol enhances the contrast when using X-ray imaging, while preventing sample motion during the scan, even with different sample orientations. Bubbles trapped during mounting and those formed during scanning (in the case of synchrotron X-ray imaging) are mitigated by multiple degassing steps. The sample preparation is also compatible with magnetic resonance imaging, computed tomography and histological observation. The sample preparation and mounting require 24-36 d for a large organ such as a whole human brain or heart. The preparation time varies depending on the composition, size and fragility of the tissue. Use of the protocol enables scanning of intact organs with a diameter of 150 mm with a local voxel size of 1 μm. The protocol requires users with expertise in handling human or animal organs, laboratory operation and X-ray imaging

    Non-statistical intermolecular energy transfer from vibrationally excited benzene in a mixed nitrogen-benzene bath.

    Get PDF
    A chemical dynamics simulation was performed to model experiments [N. A. West et al., J. Chem. Phys. 145, 014308 (2016)] in which benzene molecules are vibrationally excited to 148.1 kcal/mol within a N2-benzene bath. A significant fraction of the benzene molecules are excited, resulting in heating of the bath, which is accurately represented by the simulation. The interesting finding from the simulations is the non-statistical collisional energy transfer from the vibrationally excited benzene C6H6 * molecules to the bath. The simulations find that at ∼10-7 s and 1 atm pressure there are four different final temperatures for C6H6 * and the bath. N2 vibration is not excited and remains at the original bath temperature of 300 K. Rotation and translation degrees of freedom of both N2 and C6H6 in the bath are excited to a final temperature of ∼340 K. Energy transfer from the excited C6H6 * molecules is more efficient to vibration of the C6H6 bath than its rotation and translation degrees of freedom, and the final vibrational temperature of the C6H6 bath is ∼453 K, if the average energy of each C6H6 vibration mode is assumed to be RT. There is no vibrational equilibration between C6H6 * and the C6H6 bath molecules. When the simulations are terminated, the vibrational temperatures of the C6H6 * and C6H6 bath molecules are ∼537 K and ∼453 K, respectively. An important question is the time scale for complete energy equilibration of the C6H6 * and N2 and C6H6 bath system. At 1 atm and 300 K, the experimental V-T (vibration-translation) relaxation time for N2 is ∼10-4 s. The simulation time was too short for equilibrium to be attained, and the time for complete equilibration of C6H6 * vibration with translation, rotation, and vibration of the bath was not determined

    Long-Term Monitoring of Macroinvertebrate Communities Over 2,300 km of the Murray River Reveals Ecological Signs of Salinity Mitigation Against a Backdrop of Climate Variability

    Get PDF
    We investigated the ecological effects of salinity mitigation strategies in the Murray‐Darling Basin (MDB) using macroinvertebrate data collected over 2,300 km of the Murray River between 1980 and 2012. The MDB covers 1 × 106km2 and includes both temperate and semiarid climate zones. It was extensively developed to support irrigated agriculture in the early to mid‐1900s, and the secondary salinization that followed has become a major concern. During 1975–1985 daily salinity levels, measured as electrical conductivity above the Murray River off‐take points for South Australia's major urban water supplies, were above 800 μS/cm for 40% of the time, necessitating mitigation strategies that have reduced the average salinity by about 150 μS/cm since monitoring began. The MDB has also experienced several major floods and droughts during this time, and surface temperatures in the MDB have increased by 0.8 °C since 1910, mostly in the last 50 years. We hypothesized that (1) taxa richness would increase in response to floods; (2) community structure would shift toward tolerant, opportunistic taxa in response to warming; and (3) geographical ranges of species would change in response to shifting stream isotherms and reducing salinity. Our hypotheses were supported, although increases in water temperature appeared to be due principally to the 1997–2009 Millennium drought. Importantly, against a backdrop of significant climate variability, we believe we have distinguished a change in community structure along a salinity gradient and that changes over the 33 years can in part be attributed to mitigation strategies

    Prediction of Preterm Deliveries from EHG Signals Using Machine Learning

    Get PDF
    There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of survival. However, the rate of premature births is still globally increasing. As a result, this group of infants are most at risk of developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory and visual systems. In extreme cases, this can also lead to long-term conditions, such as cerebral palsy, mental retardation, learning difficulties, including poor health and growth. In the US alone, the societal and economic cost of preterm births, in 2005, was estimated to be $26.2 billion, per annum. In the UK, this value was close to £2.95 billion, in 2009. Many believe that a better understanding of why preterm births occur, and a strategic focus on prevention, will help to improve the health of children and reduce healthcare costs. At present, most methods of preterm birth prediction are subjective. However, a strong body of evidence suggests the analysis of uterine electrical signals (Electrohysterography), could provide a viable way of diagnosing true labour and predict preterm deliveries. Most Electrohysterography studies focus on true labour detection during the final seven days, before labour. The challenge is to utilise Electrohysterography techniques to predict preterm delivery earlier in the pregnancy. This paper explores this idea further and presents a supervised machine learning approach that classifies term and preterm records, using an open source dataset containing 300 records (38 preterm and 262 term). The synthetic minority oversampling technique is used to oversample the minority preterm class, and cross validation techniques, are used to evaluate the dataset against other similar studies. Our approach shows an improvement on existing studies with 96% sensitivity, 90% specificity, and a 95% area under the curve value with 8% global error using the polynomial classifier

    The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions

    Get PDF
    Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements

    Prediction of 7-year psychopathology from mother-infant joint attention behaviours: a nested case–control study

    Get PDF
    &lt;br&gt;Background: To investigate whether later diagnosis of psychiatric disorder can be predicted from analysis of mother-infant joint attention (JA) behaviours in social-communicative interaction at 12 months.&lt;/br&gt; &lt;br&gt;Method: Using data from a large contemporary birth cohort, we examined 159 videos of a mother-infant interaction for joint attention behaviour when children were aged one year, sampled from within the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Fifty-three of the videos involved infants who were later considered to have a psychiatric disorder at seven years and 106 were same aged controls. Psychopathologies included in the case group were disruptive behaviour disorders, oppositional-conduct disorder, attention-deficit/hyperactivity disorder, pervasive development disorder, anxiety and depressive disorders. Psychiatric diagnoses were obtained using the Development and Wellbeing Assessment when the children were seven years old.&lt;/br&gt; &lt;br&gt;Results: None of the three JA behaviours (shared look rate, shared attention rate and shared attention intensity) showed a significant association with the primary outcome of case–control status. Only shared look rate predicted any of the exploratory sub-diagnosis outcomes and was found to be positively associated with later oppositional-conduct disorders (OR [95% CI]: 1.5 [1.0, 2.3]; p = 0.041).&lt;/br&gt;&lt;br&gt;Conclusions: JA behaviours did not, in general, predict later psychopathology. However, shared look was positively associated with later oppositional-conduct disorders. This suggests that some features of JA may be early markers of later psychopathology. Further investigation will be required to determine whether any JA behaviours can be used to screen for families in need of intervention.&lt;/br&gt

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Virtual interactive musculoskeletal system (VIMS) in orthopaedic research, education and clinical patient care

    Get PDF
    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation
    corecore