73,362 research outputs found
Physiological cost of walking in those with chronic fatigue syndrome
<b>Purpose:</b> To examine the physiological cost of walking in subjects with chronic fatigue syndrome (CFS) and a matched control group, walking at their preferred and at matched walking speeds.
<b>Methods:</b> Seventeen people with CFS and 17 matched-controls participated in this observational study of physiological cost during over-ground gait. Each subject walked for 5 min at their preferred walking speed (PWS). Controls then walked for 5 min at the same pace of their matched CFS subject. Gait speed and oxygen uptake, gross and net were measured and oxygen uptake was expressed per unit distance ambulated. CFS subjects completed the CFS-Activities and Participation Questionnaire (CFS-APQ).
<b>Results:</b> At PWS the CFS group walked at a slower velocity of 0.84 ± 0.21 m s<sup>-1</sup> compared to controls with a velocity of 1.19 ± 0.13 m s<sup>-1</sup> (p < 0.001). At PWS both gross and net oxygen uptake of CFS subjects was significantly less than controls (p = 0.023 and p = 0.025 respectively). At matched-velocity both gross and net physiological cost of gait was greater for CFS subjects than controls (p = 0.048 and p = 0.001, respectively).
<b>Conclusion:</b> The physiological cost of walking was significantly greater for people with CFS compared with healthy subjects. The reasons for these higher energy demands for walking in those with CFS have yet to be fully elucidated
Gait characteristics of subjects with chronic fatigue syndrome and controls at self-selected and matched velocities
Background:
Gait abnormalities have been reported in individuals with Chronic Fatigue Syndrome (CFS) however no studies exist to date investigating the kinematics of individuals with CFS in over-ground gait. The aim of this study was to compare the over-ground gait pattern (sagittal kinematics and temporal and spatial) of individuals with CFS and control subjects at their self-selected and at matched velocities.
Methods:
Twelve individuals with CFS and 12 matched controls participated in the study. Each subject walked along a 7.2 m walkway three times at each of three velocities: self-selected, relatively slow (0.45 ms-1) and a relatively fast (1.34 ms-1). A motion analysis system was used to investigate the sagittal plane joint kinematics and temporal spatial parameters of gait.
Results:
At self-selected velocity there were significant differences between the two groups for all the temporal and spatial parameters measured, including gait velocity (P = 0.002). For the kinematic variables the significant differences were related to both ankles during swing and the right ankle during stance. At the relatively slower velocity the kinematic differences were replicated. However, the step distances decreased in the CFS population for the temporal and spatial parameters. When the gait pattern of the individuals with CFS at the relatively fast walking velocity (1.30 ± 0.24 ms-1) was compared to the control subjects at their self-selected velocity (1.32 ± 0.15 ms-1) the gait pattern of the two groups was very similar, with the exception of both ankles during swing.
Conclusion:
The self-selected gait velocity and/or pattern of individuals with CFS may be used to monitor the disease process or evaluate therapeutic intervention. These differences may be a reflection of the relatively low self-selected gait velocity of individuals with CFS rather than a manifestation of the condition itself
The refractive index and wave vector in passive or active media
Materials that exhibit loss or gain have a complex valued refractive index
. Nevertheless, when considering the propagation of optical pulses, using a
complex is generally inconvenient -- hence the standard choice of
real-valued refractive index, i.e. n_s = \RealPart (\sqrt{n^2}). However, an
analysis of pulse propagation based on the second order wave equation shows
that use of results in a wave vector \emph{different} to that actually
exhibited by the propagating pulse. In contrast, an alternative definition n_c
= \sqrt{\RealPart (n^2)}, always correctly provides the wave vector of the
pulse. Although for small loss the difference between the two is negligible, in
other cases it is significant; it follows that phase and group velocities are
also altered. This result has implications for the description of pulse
propagation in near resonant situations, such as those typical of metamaterials
with negative (or otherwise exotic) refractive indices.Comment: Phys. Rev. A, to appear (2009
Geological and geophysical field investigations from a lunar base at Mare Smythii
Mare Smythii, located on the equator and east limb of the Moon, has a great variety of scientific and economic uses as the site for a permanent lunar base. Here a complex could be established that would combine the advantages of a nearside base (for ease of communications with Earth and normal operations) with those of a farside base (for shielding a radio astronomical observatory from the electromagnetic noise of Earth). The Mare Smythii region displays virtually the entire known range of geological processes and materials found on the Moon; from this site, a series of field traverses and investigations could be conducted that would provide data on and answers to fundamental questions in lunar geoscience. This endowment of geological materials also makes the Smythii region attractive for the mining of resources for use both on the Moon and in Earth-Moon space. We suggest that the main base complex be located at 0, 90 deg E, within the mare basalts of the Smythii basin; two additional outposts would be required, one at 0, 81 deg E to maintain constant communications with Earth, and and the other, at 0, 101 deg E on the lunar farside, to serve as a radio astronomical observatory. The bulk of lunar surface activities could be conducted by robotic teleoperations under the direct control of the human inhabitants of the base
Thermodynamic properties of Mg_2SiO_4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite
Polycrystalline samples of Mg_2SiO_4 forsterite and wadsleyite were synthesized and then dynamically loaded to pressures of 39–200 GPa. Differences in initial density and internal energy between these two phases lead to distinct Hugoniots, each characterized by multiple phase regimes. Transformation to the high-pressure phase assemblage MgO + MgSiO_3 perovksite is complete by 100 GPa for forsterite starting material but incomplete for wadsleyite. The datum for wadsleyite shocked to 136 GPa, however, is consistent with the assemblage MgO + MgSiO_3 post-perovksite. Marked increases in density along the Hugoniots of both phases between ∼130 and 150 GPa are inconsistent with any known solid-solid phase transformation in the Mg_2SiO_4 system but can be explained by melting. Density increases upon melting are consistent with a similar density increase observed in the MgSiO_3 system. This implies that melts with compositions over the entire Mg/Si range likely for the mantle would be negatively or neutrally buoyant at conditions close to the core-mantle boundary, supporting the partial melt hypothesis to explain the occurrence of ultra-low velocity zones at the base of the mantle. From the energetic difference between the high-pressure segments of the two Hugoniots, we estimate a Grüneisen parameter (γ) of 2.6 ± 0.35 for Mg_2SiO_4-liquid between 150 and 200 GPa. Comparison to low-pressure data and fitting of the absolute pressures along the melt Hugoniots both require that γ for the melt increases with increasing density. Similar behavior was recently predicted in MgSiO_3 liquid via molecular dynamics simulations. This result changes estimates of the temperature profile, and hence the dynamics, of a deep terrestrial magma ocean
Managing the Regulatory State: The Experience of the Bush Administration
This Article traces the history of Presidential management of the regulatory state up to the administration of President George W. Bush. It focuses on the latter\u27s implementation of smarter regulation, an approach to regulation based on unfunded mandates on the private sector implemented through the Office of Management and Budget, an organization within the Executive Office of the President. It finds cost-benefit analysis an essential, yet often neglected, tool for implementing efficient and effective regulations. It concludes the policies promoted under President Bush\u27s OMB have effectively cut costs by streamlining the rule-making process and discouraging adopting new federal rules, but cautions there is still a sea of overlapping regulations and conflict over turf among agencies causing the administrative state to steadily rise in cost
Information flow through a model of the C. elegans klinotaxis circuit
Understanding how information about external stimuli is transformed into
behavior is one of the central goals of neuroscience. Here we characterize the
information flow through a complete sensorimotor circuit: from stimulus, to
sensory neurons, to interneurons, to motor neurons, to muscles, to motion.
Specifically, we apply a recently developed framework for quantifying
information flow to a previously published ensemble of models of salt
klinotaxis in the nematode worm C. elegans. The models are grounded in the
neuroanatomy and currently known neurophysiology of the worm. The unknown model
parameters were optimized to reproduce the worm's behavior. Information flow
analysis reveals several key principles underlying how the models operate: (1)
Interneuron class AIY is responsible for integrating information about positive
and negative changes in concentration, and exhibits a strong left/right
information asymmetry. (2) Gap junctions play a crucial role in the transfer of
information responsible for the information symmetry observed in interneuron
class AIZ. (3) Neck motor neuron class SMB implements an information gating
mechanism that underlies the circuit's state-dependent response. (4) The neck
carries non-uniform distribution about changes in concentration. Thus, not all
directions of movement are equally informative. Each of these findings
corresponds to an experimental prediction that could be tested in the worm to
greatly refine our understanding of the neural circuit underlying klinotaxis.
Information flow analysis also allows us to explore how information flow
relates to underlying electrophysiology. Despite large variations in the neural
parameters of individual circuits, the overall information flow architecture
circuit is remarkably consistent across the ensemble, suggesting that
information flow analysis captures general principles of operation for the
klinotaxis circuit
Nucleic acid-based approaches to investigate microbial-related cheese quality defects
peer-reviewedThe microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors.This work was funded by the Department of Agriculture, Food and the Marine under the Food Institutional Research Measure. Daniel J. O’Sullivan is in receipt of a Teagasc Walsh Fellowship,
Grant Number:2012205
- …