21 research outputs found

    Education and Integration: Partnering the Community with Adults with Developmental Disabilities for St. Madeline Sophia\u27s Center

    Get PDF
    Student research project for St. Madeline Sophia\u27s Center which includes a needs assessment, program design & methodology, social marketing plan, cultural competency plan, evaluation plan and budget.https://digital.sandiego.edu/npi-bpl-programdesign/1015/thumbnail.jp

    Effects of Calcium Pyruvate Supplementation During Training On Body Composition, Exercise Capacity, and Metabolic Responses To Exercise

    Get PDF
    Objective: We evaluated the effects of calcium pyruvate supplementation during training on body composition and metabolic responses to exercise. Method: Twenty-three untrained females were matched and assigned to ingest in a double blind and randomized manner either 5 g of calcium pyruvate (PYR) or a placebo (PL) twice daily for 30 d while participating in a supervised exercise program. Prior to and following supplementation, subjects had body composition determined via hydrodensiometry; performed a maximal cardiopulmonary exercise test; and performed a 45-min walk test at 70% of pre-training VO2 max in which fasting pre- and post exercise blood samples determined. Results: No significant differences were observed between groups in energy intake or training volume. Univariate repeated measures ANOVA revealed that subjects in the PYR group gained less weight (PL 1.2 ± 0.3, PYR 0.3 ± 0.3 kg, P = 0.04), lost more fat (PL 1.1 ± 0.5; PYR −0.4 ± 0.5 kg, P = 0.03), and tended to lose a greater percentage of body fat (PL 1.0 ± 0.7; PYR −0.65 ± 0.6%, P = 0.07), with no differences observed in fat-free mass (PL 0.1 ± 0.5; PYR 0.7 ± 0.3 kg, P = 0.29). However, these changes were not significant when body composition data were analyzed by MANOVA (P = 0.16). There was some evidence that PYR may negate some of the beneficial effects of exercise on HDL values. No significant differences were observed between groups in maximal exercise responses or metabolic responses to submaximal walking. Conclusions: Results indicate that PYR supplementation during training does not significantly affect body composition or exercise performance and may negatively affect some blood lipid levels

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Effects of Coleus Forskohlii Supplementation on Body Composition and Hematological Profiles in Mildly Overweight Women

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>This study investigated the effects of <it>Coleus Forskohlii </it>(CF) on body composition, and determined the safety and efficacy of supplementation.</p> <p>Methods</p> <p>In a double blind and randomized manner, 23 females supplemented their diet with ForsLean™ (250 mg of 10% CF extract, (n = 7) or a placebo [P] (n = 12) two times per day for 12-wks. Body composition (DEXA), body weight, and psychometric instruments were obtained at 0, 4, 8 & 12 weeks of supplementation. Fasting blood samples and dietary records (4-d) were obtained at 0 and 12-wks. Side effects were recorded on a weekly basis. Data were analyzed by repeated measures ANOVA and are presented as mean changes from baseline for the CF and placebo groups, respectively.</p> <p>Results</p> <p>No significant differences were observed in caloric or macronutrient intake. CF tended to mitigate gains in body mass (-0.7 ± 1.8, 1.0 ± 2.5 kg, p = 0.10) and scanned mass (-0.2 ± 1.3, 1.7 ± 2.9 kg, p = 0.08) with no significant differences in fat mass (-0.2 ± 0.7, 1.1 ± 2.3 kg, p = 0.16), fat free mass (-0.1 ± 1.3, 0.6 ± 1.2 kg, p = 0.21), or body fat (-0.2 ± 1.0, 0.4 ± 1.4%, p = 0.40). Subjects in the CF group tended to report less fatigue (p = 0.07), hunger (p = 0.02), and fullness (p = 0.04). No clinically significant interactions were seen in metabolic markers, blood lipids, muscle and liver enzymes, electrolytes, red cells, white cells, hormones (insulin, TSH, T3, and T4), heart rate, blood pressure, or weekly reports of side effects.</p> <p>Conclusion</p> <p>Results suggest that CF does not appear to promote weight loss but may help mitigate weight gain in overweight females with apparently no clinically significant side effects.</p
    corecore