10,835 research outputs found

    Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Get PDF
    Momentum and scalar (heat and water vapor) transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out), and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable). Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS) thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft. <br><br> During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable), the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport. <br><br> In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i) downward plumes within the canopy correspond to large downward plumes coming from above, and (ii) upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar quantities carried by downward plumes are not modified when penetrating the canopy and crossing upper scalar sources. Consequently, scalars appear to be preferentially injected into upward thermal plumes as opposed to in downward thermal plumes. <br><br> In stable conditions, intermittent downward and upward motions probably related to elevated shear layers are responsible for canopy-top heat and water vapor transport through the initiation of turbulent instabilities, but this transport remains small. During the foliated period, lower-canopy heat and water vapor transport occurs through thermal plumes associated with a subcanopy unstable layer

    A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    Full text link
    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the buildup of stellar mass in low-metallicity systems. We present the first VLT/MUSE optical IFU observations of the interacting dwarf pair dm1647+21, selected from the TiNy Titans survey. The Hα\alpha emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M⊙_{\odot} yr−1^{-1}, 2.7 times higher than the SFR inferred from SDSS data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >> 50. Examining the spatially-resolved maps of classic optical line diagnostics, we find the ISM excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies: rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus be more distributed.Comment: Accepted for publication in ApJ. 11 pages, 5 figures, 1 table. Figures slightly degraded to meet arXiv size restrictions. For more information about TiNy Titans see https://lavinia.as.arizona.edu/~tinytitans

    Fundamental Magnetic Properties and Structural Implications for Nanocrystalline Fe-Ti-N Thin Films

    Full text link
    The magnetization (M) as a function of temperature (T) from 2 to 300 K and in-plane field (H) up to 1 kOe, room temperature easy and hard direction in-plane field hysteresis loops for fields between -100 and +100 Oe, and 10 GHz ferromagnetic resonance (FMR) profiles have been measured for a series of soft-magnetic nano-crystalline 50 nm thick Fe-Ti-N films made by magnetron sputtering in an in-plane field. The nominal titanium concentration was 3 at. % and the nitrogen concentrations (xN) ranged from zero to 12.7 at. %. The saturation magnetization (Ms) vs. T data and the extracted exchange parameters as a function of xN are consistent with a lattice expansion due to the addition of interstitial nitrogen in the body-centered-cubic (bcc) lattice and a structural transition to body-centered-tetragonal (bct) in the 6-8 at. % nitrogen range. The hysteresis loop and FMR data show a consistent picture of the changes in both the uniaxial and cubic anisotropy as a function of xN. Films with xN > 1.9 at. % show an overall uniaxial anisotropy, with an anisotropy field parameter Hu that increases with xN. The corresponding dispersion averaged uniaxial anisotropy energy density parameter = HuMs/2 is a linear function of xN, with a rate of increase of 950 erg/cm3 per at. % nitrogen. The estimated uniaxial anisotropy energy per nitrogen atom is 30 J/mol, a value consistent with other systems. For xN below 6 at. %, the scaling of coercive force Hc data with the sixth power of the grain size D indicate a grain averaged effective cubic anisotropy energy density parameter that is about an order of magnitude smaller that the nominal K1 values for iron, and give a quantitative vs. D response that matches predictions for exchange coupled random grains with cubic anisotropy.Comment: 13 pages, 7 figure

    New Techniques for Relating Dynamically Close Galaxy Pairs to Merger and Accretion Rates : Application to the SSRS2 Redshift Survey

    Get PDF
    We introduce two new pair statistics, which relate close galaxy pairs to the merger and accretion rates. We demonstrate the importance of correcting these (and other) pair statistics for selection effects related to sample depth and completeness. In particular, we highlight the severe bias that can result from the use of a flux-limited survey. The first statistic, denoted N_c, gives the number of companions per galaxy, within a specified range in absolute magnitude. N_c is directly related to the galaxy merger rate. The second statistic, called L_c, gives the total luminosity in companions, per galaxy. This quantity can be used to investigate the mass accretion rate. Both N_c and L_c are related to the galaxy correlation function and luminosity function in a straightforward manner. We outline techniques which account for various selection effects, and demonstrate the success of this approach using Monte Carlo simulations. If one assumes that clustering is independent of luminosity (which is appropriate for reasonable ranges in luminosity), then these statistics may be applied to flux-limited surveys. These techniques are applied to a sample of 5426 galaxies in the SSRS2 redshift survey. Using close dynamical pairs, we find N_c(-21<M_B<-18) = 0.0226+/-0.0052 and L_c(-21<M_B<-18) = 0.0216+/-0.0055 10^{10} h^2 L_sun at z=0.015. These are the first secure estimates of low-z close pair statistics. If N_c remains fixed with redshift, simple assumptions imply that ~ 6.6% of present day galaxies with -21<M_B<-18 have undergone mergers since z=1. When applied to redshift surveys of more distant galaxies, these techniques will yield the first robust estimates of evolution in the galaxy merger and accretion rates. [Abridged]Comment: 26 pages (including 10 postscript figures) plus 3 gif figures. Accepted for publication in ApJ. Paper (including full resolution images) also available at http://www.astro.utoronto.ca/~patton/ssrs2, along with associated pair classification experiment (clickable version of Figure 5

    Eyes wide shut? UK consumer perceptions on aviation climate impacts and travel decisions to New Zealand

    Get PDF
    The purview of climate change concern has implicated air travel, as evidenced in a growing body of academic literature concerned with aviation CO2 emissions. This article assesses the relevance of climate change to long haul air travel decisions to New Zealand for United Kingdom consumers. Based on 15 semi-structured open-ended interviews conducted in Bournemouth, UK during June 2009, it was found that participants were unlikely to forgo potential travel decisions to New Zealand because of concern over air travel emissions. Underpinning the interviewees’ understandings and responses to air travel’s climate impact was a spectrum of awareness and attitudes to air travel and climate change. This spectrum ranged from individuals who were unaware of air travel’s climate impact to those who were beginning to consume air travel with a ‘carbon conscience’. Within this spectrum were some who were aware of the impact but not willing to change their travel behaviours at all. Rather than implicating long haul air travel, the empirical evidence instead exemplifies changing perceptions towards frequent short haul air travel and voices calls for both government and media in the UK to deliver more concrete messages on air travel’s climate impact

    Ozone exchange within and above an irrigated Californian orchard

    Get PDF
    In this study, the canopy effects on the vertical ozone exchange within and above Californian orchard are investigated. We examined the comprehensive dataset obtained from the Canopy Horizontal Array Turbulence Study (CHATS). CHATS typifies a rural central Californian site, with O3 mixing ratios of less than 60 ppb and moderate NOx mixing ratios. The CHATS campaign covered a complete irrigation cycle, with our analysis including periods before and after irrigation. Lower O3 mixing ratios were found following irrigation, together with increased wind speeds, decreased air temperatures and increased specific humidity. Friction velocity, sensible heat and gas fluxes above the canopy were estimated using variations on the flux-gradient method, including a method which accounts for the roughness sublayer (RSL). These methods were compared to fluxes derived from observed eddy diffusivities of heat and friction velocity. We found that the use of the RSL parameterization, which accounts for the canopy-induced turbulent mixing above the canopy, resulted in a stronger momentum, heat, and ozone exchange fluxes above this orchard, compared to the method which omits the RSL. This was quantified by the increased friction velocity, heat flux and ozone deposition flux of up to 12, 29, and 35% at 2.5 m above the canopy, respectively. Within the canopy, vertical fluxes, as derived from local gradients and eddy diffusivity of heat, were compared to fluxes calculated using the Lagrangian inverse theory. Both methods showed a presence of vertical flux divergence of friction velocity, heat and ozone, suggesting that turbulent mixing was inefficient in homogenizing the effects driven by local sources and sinks on vertical exchange of those quantities. This weak mixing within the canopy was also corroborated in the eddy diffusivities of friction velocity and heat, which were calculated directly from the observations. Finally, the influence of water stress on the O3 budget was examined by comparing the results prior and after the irrigation. Although the analysis is limited to the local conditions, our in situ measurements indicated differences in the O3 mixing ratio prior and after irrigation during CHATS. We attribute these O3 mixing ratio changes to enhanced biological emission of volatile organic compounds (VOCs), driven by water stress

    Health Risk Screening and Counselling of Adolescents in Primary Care: a Cluster Randomised Controlled Trial

    Get PDF
    The research reported in this paper is a project of the Australian Primary Health Care Research Institute which is supported by a grant from the Australian Government Department of Health and Ageing under the Primary Health Care Research Evaluation and Development Strategy
    • 

    corecore