4 research outputs found

    Spatial and temporal heterogeneity of

    No full text
    We studied the spatiotemporal trends of Eragrostis curvula (Schrad.) Nees in a flood meadow of a regulated river. The response variables, including the abundance of colonies, colony sizes, flowering spikes, biomass and root structure were checked against a set of environmental variables. These variables included distance from the river, substrate conditions (stony to sandy), soil nutrients (total nitrogen, phosphorous and calcium) and soil moisture. Relationships were evidenced using redundancy analysis. Response variables were found to be distinctive and based on substrate conditions (i.e. stony or sandy). The variables ‘distance from the river’ and ‘soil phosphorous’ contributed significantly to the overall variance. Stony habitats were observed to have lower soil nutrient levels and were characterised by monospecific stands of E. curvula, while the high nutrient levels of sandy habitats promoted heterogeneous herbaceous vegetation growth. Primary production, especially belowground, was measured to be significantly higher (t-test, P<0.05) in stony habitats. Spatiotemporal trends suggested that, irrespective of the number of colonies, E. curvula demonstrated significant levels of adaptation to micro-environments through biomass allocation and the morphological plasticity of its roots. The study results suggest that river regulation and the subsequent reduction in the frequency of inundation, in addition to the reduction of nutrients and fine sediment supply downstream, give a competitive edge to E. curvula over other herbaceous species

    The deflectors influence on flow complexity, bed morphology, sediment transport and water quality of urban lotic waters - A laboratory study

    No full text
    In this laboratory study different combinations of bed (sand, pebble gravel [gravel], and a mix of sand and gravel) and flow (typical and overtopping) were experimented with to investigate the impact of porous deflectors in flow diversity, water quality, and fish performance in prismatic open channels. Deflectors changed the gradually varied flow to a rapidly varied flow, as a sudden change in the water depth was observed at the deflectors, and this change was large for smooth beds. With the presence of gravel, the scouring near the downstream deflector was almost twice that of the sand bed, and with the scouring at its own upstream deflector, irrespective of whether the flow was typical or overtopping. This behavior was a result of sand mobilization due to shear stress and sand mobilization aided gravel transport. The mixed bed showed less gravel movement compared to the gravel-only bed. The percentage of sediment washed out was minor for all bed scenarios, indicating that sediment transport was local. Relative to the sand bed without deflectors (representing a typical urban canal), deflectors resulted in reduced and improved water quality (in terms of sediment load) for sand, and mixed bed, respectively. The fishes found refuge and were comfortable in the pool areas created by deflectors unlike in channels without deflectors where they showed exhaustion
    corecore