900 research outputs found

    Structural disorder versus chiral magnetism in Cr1/3_{1/3}NbS2_2

    Full text link
    The crystal structure of a disordered form of Cr1/3_{1/3}NbS2_2 has been characterized using diffraction and inelastic scattering of synchrotron radiation. In contrast to the previously reported symmetry (P63_322), the crystal can be described by a regular twinning of an average P63_3 structure with three disordered positions of the Cr ions. Short-range correlations of the occupational disorder result in a quite intense and structured diffuse scattering; a static nature of the disorder was unambiguously attributed by the inelastic x-ray scattering. The diffuse scattering has been modeled using a reverse Monte-Carlo algorithm assuming a disorder of the Cr sub-lattice only. The observed correlated disorder of the Cr sub-lattice reduces the temperature of the magnetic ordering from 130 K to 88 K and drastically modifies the field dependence of the magnetization as it is evidenced by the SQUID magnetometery. We conclude, that in contrast to the helicoidal spin structure assumed for P63_322 form, the compound under study is ferromagnetically ordered with a pronounced in-plane anisotropy

    Experimental Investigation of the Nature of the Knee in the Primary Cosmic Ray Energy Spectrum with the GAMMA experiment

    Full text link
    We present preliminary results obtained by a novel difference method for the study of the nature of the knee in the energy spectrum of the primary cosmic radiation. We have applied this method to data from the GAMMA experiment in Armenia. The analysis provides evidence for the possible existence of a nearby source of primary cosmic rays in the Southern hemisphere.Comment: 17 pages, 5 figure

    Crystal structure and high-field magnetism of La2CuO4

    Get PDF
    Neutron diffraction was used to determine the crystal structure and magnetic ordering pattern of a La2CuO4 single crystal, with and without applied magnetic field. A previously unreported, subtle monoclinic distortion of the crystal structure away from the orthorhombic space group Bmab was detected. The distortion is also present in lightly Sr-doped crystals. A refinement of the crystal structure shows that the deviation from orthorhombic symmetry is predominantly determined by displacements of the apical oxygen atoms. An in-plane magnetic field is observed to drive a continuous reorientation of the copper spins from the orthorhombic b-axis to the c-axis, directly confirming predictions based on prior magnetoresistance and Raman scattering experiments. A spin-flop transition induced by a c-axis oriented field previously reported for non-stoichiometric La2CuO4 is also observed, but the transition field (11.5 T) is significantly larger than that in the previous work

    Charge ordering transition in GdBaCo2O5: evidence of reentrant behavior

    Full text link
    We present a detailed study on the charge ordering (CO) transition in GdBaCo2O5 system by combining high resolution synchrotron powder/single crystal diffraction with electron paramagnetic resonance (EPR) experiments as a function of temperature. We found a second order structural phase transition at TCO=247 K (Pmmm to Pmma) associated with the onset of long range CO. At Tmin = 1.2TCO, the EPR linewidth rapidly broadens providing evidence of spin fluctuations due to magnetic interactions between Gd3+ ions and antiferromagnetic couplings of Co2+/Co3+ sublattices. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5 sets in at TCO. Pair distribution function (PDF) analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T = 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of CO. This result is supported by the weakening of superstructure reflections and the temperature evolution of EPR linewidth that is consistent with paramagnetic (PM) reentrant behavior reported in the GdBaCo2O5.5 parent compound.Comment: 30 pages, 10 figure

    Search for EAS radio-emission at the Tien-Shan shower installation at a height of 3340 m above sea level

    Get PDF
    The complex EAS installation of the Tien Shan mountain cosmic ray station which is situated at a height of 3340 m above sea level includes the scintillation and Cherenkov detectors of charged shower particles, an ionization calorimeter and a set of neutron detectors for registering the hadronic component of the shower, and a number of underground detectors of the penetrative EAS component. Now it is intended to expand this installation with a promising method for detecting the radio-emission generated by the particles of the developing shower. The facility for radio-emission detection consists of a three crossed dipole antennae, one being set vertically, and another two – mutually perpendicularly in a horizontal plane, all of them being connected to a three-channel radio-frequency amplifier of German production. By the passage of an extensive air shower, which is defined by a scintillation shower detector system, the output signal of antenna amplifier is digitized by a fast multichannel DT5720 ADC of Italian production, and kept within computer memory. The further analysis of the detected signal anticipates its operation according to a special algorithm and a search for the pulse of radio-emission from the shower. A functional test of the radio-installation is made with artificial signals which imitate those of the shower, and with the use of a N1996A type wave analyzer of Agilent Technologies production. We present preliminary results on the registration of extensive air shower emission at the Tien Shan installation which were collected during test measurements held in Summer 2016

    Banana root and soil health project - Australia

    Get PDF
    The banana plant forms an adventitious root system that is dependent on soil physical, chemical and biological properties to function efficiently. A pot experiment demonstrated that increasing soil compaction was able to significantly reduce the weight of banana roots and shoots. However, in the presence of Radopholus similis the effects of soil compaction were obscured, due to the significant reduction in root weight caused by the nematode. The use of a basic set of soil quality indicators that can be readily used by farmers, was linked to soil nematode indicators to determine relationships between soil properties. In a survey of banana fields in North Queensland, different diameter root classes were affected differently by changing soil properties. Banana roots greater than 5 mm diameter were positively correlated with aggregate stability and negatively correlated with soil bulk density. Banana roots less than 1 mm were positively correlated with electrical conductivity. Specific interactions between soil properties become apparent as crop production systems become more uniform. This allows farmers to prioritise management options to improve the most deficient soil health indicators. The addition of organic amendments is one possible method of correcting degrading soils. The use of amendments with high carbon contents, such as grass hay, banana trash and lucerne hay, were able to significantly suppress R. similis in the roots of banana plants relative to untreated soil. Due to banana production being located near environmentally sensitive areas there is an increasing need to monitor and modify soil management practices. However, this needs to be linked with a framework that allows the integration of all soil components with a system to allow continual improvement in soil management to allow banana production to have minimal impact on the surrounding environment

    The commensurate composite sigma-structure of beta-tantalum

    Get PDF
    The single-crystal investigation of the self-hosting sigma-structure of beta-tantalum (beta-Ta) at 120 K (low-temperature, LT, structure) and at 293 K (RT-I before cooling and RT-II after cooling and rewarming; RT represents room temperature) shows that this structure is indeed a specific two-component composite where the components have the same ( or an integer multiple) lattice constants but different space groups. The space groups of both host ( H) and guest ( G) components cause systematic absences, which result from their intersection. The highest symmetry of a sigma-structure can be described as [H: P4(2)/mnm; G: P4/mbm (c(G) = 0.5c(H)); composite: P4(2)/mnm]. A complete analysis of possible symmetries is presented in the Appendix. In beta-Ta, two components modify their symmetry during the thermal process 293 K (RT- I)) double right arrow 120 K (LT)) double right arrow 293 K (RT-II): [H: P (4) over bar2(1)m; G: P (4) over bar2(1)m; composite: P (4) over bar2(1)m]) double right arrow [H: P (4) over bar, G: P4/mbm (c(G) = 0.5c(H)), composite: P (4) over bar]) [H: P (4) over bar2(1)m, G: P4/mbm (c(G) = 0.5c(H)), composite: P (4) over bar2(1)m]. Thus, the phase transition is reversible with respect to H and irreversible with respect to G

    Development of key soil health indicators for the Australian banana industry

    Get PDF
    To improve the sustainability and environmental accountability of the banana industry there is a need to develop a set of soil health indicators that integrate physical, chemical and biological soil properties. These indicators would allow banana growers, extension and research workers to improve soil health management practices. To determine changes in soil properties due to the cultivation of bananas, a paired site survey was conducted comparing soil properties under conventional banana systems to less intensively managed vegetation systems, such as pastures and forest. Measurements were made on physical, chemical and biological soil properties at seven locations in tropical and sub-tropical banana producing areas. Soil nematode community composition was used as a bioindicator of the biological properties of the soil. Soils under conventional banana production tended to have a greater soil bulk density, with less soil organic carbon (C) (both total C and labile C), greater exchangeable cations, higher extractable P, greater numbers of plant-parasitic nematodes and less nematode diversity, relative to less intensively managed plant systems. The organic banana production systems at two locations had greater labile C, relative to conventional banana systems, but there was no significant change in nematode community composition. There were significant interactions between physical, chemical and nematode community measurements in the soil, particularly with soil C measurements, confirming the need for a holistic set of indicators to aid soil management. There was no single indicator of soil health for the Australian banana industry, but a set of soil health indicators, which would allow the measurement of soil improvements should include: bulk density, soil C, pH, EC, total N, extractable P, ECEC and soil nematode community structure

    Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob disease

    Get PDF
    In recent studies, the amyloid form of recombinant prion protein (PrP) encompassing residues 89–230 (rPrP 89-230) produced in vitro induced transmissible prion disease in mice. These studies showed that unlike “classical” PrPSc produced in vivo, the amyloid fibrils generated in vitro were more proteinase-K sensitive. Here we demonstrate that the amyloid form contains a proteinase K-resistant core composed only of residues 152/153–230 and 162–230. The PK-resistant fragments of the amyloid form are similar to those observed upon PK digestion of a minor subpopulation of PrPSc recently identified in patients with sporadic Creutzfeldt-Jakob disease (CJD). Remarkably, this core is sufficient for self-propagating activity in vitro and preserves a β-sheet-rich fibrillar structure. Full-length recombinant PrP 23-230, however, generates two subpopulations of amyloid in vitro: One is similar to the minor subpopulation of PrPSc, and the other to classical PrPSc. Since no cellular factors or templates were used for generation of the amyloid fibrils in vitro, we speculate that formation of the subpopulation of PrPSc with a short PK-resistant C-terminal region reflects an intrinsic property of PrP rather than the influence of cellular environments and/or cofactors. Our work significantly increases our understanding of the biochemical nature of prion infectious agents and provides a fundamental insight into the mechanisms of prions biogenesis
    corecore