14 research outputs found

    The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: likely intersectionality with other neurological conditions

    No full text
    Abstract Background Lyme neuroborreliosis, caused by the bacterium Borrelia burgdorferi affects both the central and peripheral nervous systems (CNS, PNS). The CNS manifestations, especially at later stages, can mimic/cause many other neurological conditions including psychiatric disorders, dementia, and others, with a likely neuroinflammatory basis. The pathogenic mechanisms associated with Lyme neuroborreliosis, however, are not fully understood. Methods In this study, using cultures of primary rhesus microglia, we explored the roles of several fibroblast growth factor receptors (FGFRs) and fibroblast growth factors (FGFs) in neuroinflammation associated with live B. burgdorferi exposure. FGFR specific siRNA and inhibitors, custom antibody arrays, ELISAs, immunofluorescence and microscopy were used to comprehensively analyze the roles of these molecules in microglial neuroinflammation due to B. burgdorferi. Results FGFR1-3 expressions were upregulated in microglia in response to B. burgdorferi. Inhibition of FGFR 1, 2 and 3 signaling using siRNA and three different inhibitors showed that FGFR signaling is proinflammatory in response to the Lyme disease bacterium. FGFR1 activation also contributed to non-viable B. burgdorferi mediated neuroinflammation. Analysis of the B. burgdorferi conditioned microglial medium by a custom antibody array showed that several FGFs are induced by the live bacterium including FGF6, FGF10 and FGF12, which in turn induce IL-6 and/or CXCL8, indicating a proinflammatory nature. To our knowledge, this is also the first-ever described role for FGF6 and FGF12 in CNS neuroinflammation. FGF23 upregulation, in addition, was observed in response to the Lyme disease bacterium. B. burgdorferi exposure also downregulated many FGFs including FGF 5, 7, 9, 11, 13, 16, 20 and 21. Some of the upregulated FGFs have been implicated in major depressive disorder (MDD) or dementia development, while the downregulated ones have been demonstrated to have protective roles in epilepsy, Parkinson’s disease, Alzheimer’s disease, spinal cord injury, blood–brain barrier stability, and others. Conclusions In this study we show that FGFRs and FGFs are novel inducers of inflammatory mediators in Lyme neuroborreliosis. It is likely that an unresolved, long-term (neuro)-Lyme infection can contribute to the development of other neurologic conditions in susceptible individuals either by augmenting pathogenic FGFs or by suppressing ameliorative FGFs or both

    Localized Temperature Control in Microchannel Reactors Using Bimetallic Thermally-Actuated Valves

    No full text
    The smaller physical dimensions of microchannel reactors result in substantial reductions in capital and operating cost. However, microreactor control is challenging because of the difficulty of implementing distributed measurement devices and actuators. Using an autothermal catalytic plate reactor coupling steam-methane reforming and methane combustion as a test case, we propose a novel temperature control method using bimetallic strips that function as thermally actuated valves to regulate fluid flow in the microchannels. Bimetallic strips convert temperature variations into mechanical displacement, and by proper placement in the reactor channels, they can function as valves that close and open with temperature changes. We discuss the necessary design decisions and show through simulations that the thermally actuated valves contribute to an inherently safer design of microchannel reactors. We demonstrate that they can compensate for unequal flow distribution to the microchannels and successfully reject disturbances that would otherwise result in hotspots that could damage the reactor structure

    Clinical insignificance of [<sup>18</sup>F]PSMA-1007 avid non-specific bone lesions: a retrospective evaluation

    No full text
    Purpose: [18F]PSMA-1007 offers advantages of low urinary tracer excretion and theoretical improved spatial resolution for imaging prostate cancer. However, non-specific bone lesions (NSBLs), defined as mild to moderate focal bone uptake without a typical morphological correlate on CT, are a common finding on [18F]PSMA-1007 PET/CT. The purpose of this study was to investigate the clinical outcomes of patients with [18F]PSMA-1007 avid NSBLs, to determine whether patients with NSBLs represent a higher risk clinical cohort, and to determine whether SUVmax can be used as a classifier of bone metastasis. Methods: A retrospective audit of 214 men with prostate cancer was performed to investigate the clinical outcomes of [18F]PSMA-1007 avid NSBLs according to defined criteria. We also compared the serum PSA, Gleason score, and uptake time of patients with [18F]PSMA-1007 avid NSBLs to patients without [18F]PSMA-1007 avid bone lesions. Finally, we analysed an SUVmax threshold to identify bone metastases using ROC curve analysis. Results: Ninety-four of 214 patients (43.9%) demonstrated at least one NSBL. No [18F]PSMA-1007 avid NSBLs met criteria for a likely malignant or definitely malignant lesion after a median 15.8-month follow-up interval (11.9% definitely benign, 50.3% likely benign, and 37.7% equivocal). There were no statistically significant differences in serum PSA, Gleason score, and uptake time between patients with [18F]PSMA-1007 avid NSBLs and those without [18F]PSMA-1007 avid bone lesions. All NSBLs with adequate follow-up had SUVmax ≤ 11.1. The value of the highest SUVmax distinguished between NSBLs and definite prostate cancer bone metastases, whereby an SUVmax threshold of ≥ 7.2 maximized the Youden’s index. Conclusion: [18F]PSMA-1007 avid NSBLs rarely represent prostate cancer bone metastases. When identified in the absence of definite metastatic disease elsewhere, it is appropriate to classify those with SUVmax < 7.2 as likely benign. NSBLs with SUVmax 7.2–11.1 may be classified as equivocal or metastatic, with patient clinical risk factors, scan appearance, and potential management implications used to guide interpretation

    Effect of B-Cell Depletion on Viral Replication and Clinical Outcome of Simian Immunodeficiency Virus Infection in a Natural Host▿ †

    No full text
    Simian immunodeficiency virus (SIV)-infected African nonhuman primates do not progress to AIDS in spite of high and persistent viral loads (VLs). Some authors consider the high viral replication observed in chronic natural SIV infections to be due to lower anti-SIV antibody titers than those in rhesus macaques, suggesting a role of antibodies in controlling viral replication. We therefore investigated the impact of antibody responses on the outcome of acute and chronic SIVagm replication in African green monkeys (AGMs). Nine AGMs were infected with SIVagm.sab. Four AGMs were infused with 50 mg/kg of body weight anti-CD20 (rituximab; a gift from Genentech) every 21 days, starting from day −7 postinfection up to 184 days. The remaining AGMs were used as controls and received SIVagm only. Rituximab-treated AGMs were successfully depleted of CD20 cells in peripheral blood, lymph nodes (LNs), and intestine, as shown by the dynamics of CD20+ and CD79a+ cells. There was no significant difference in VLs between CD20-depleted AGMs and control monkeys: peak VLs ranged from 107 to 108 copies/ml; set-point values were 104 to 105 SIV RNA copies/ml. Levels of acute mucosal CD4+ T-cell depletion were similar for treated and nontreated animals. SIVagm seroconversion was delayed for the CD20-depleted AGMs compared to results for the controls. There was a significant difference in both the timing and magnitude of neutralizing antibody responses for CD20-depleted AGMs compared to results for controls. CD20 depletion significantly altered the histological structure of the germinal centers in the LNs and Peyer's patches. Our results, although obtained with a limited number of animals, suggest that humoral immune responses play only a minor role in the control of SIV viral replication during acute and chronic SIV infection in natural hosts

    Prospective intra-individual blinded comparison of [18F]PSMA-1007 and [68Ga]Ga-PSMA-11 PET/CT imaging in patients with confirmed prostate cancer

    No full text
    Introduction: [18F]PSMA-1007 has potential advantages over [68 Ga]Ga-PSMA-11, although limited prospective data evaluating diagnostic performance exist. The aims of this study are to describe the concordance of [18FPSMA-1007 and [68 Ga]Ga-PSMA-11 for TNM with the American Joint Committee on Cancer (AJCC) prognostic stage and assess differences in tracer uptake. Methods: Fifty men (mean age 71.8) were imaged with [68 Ga]Ga-PSMA-11 and [18F]PSMA-1007 < 4 weeks apart. Images were independently reported according to TNM by two experienced nuclear medicine specialists blinded to the other scan and prior imaging. Discordant results were resolved by a third independent nuclear medicine specialist. Quantitative analysis of lesion uptake and physiologic tissue for each tracer was performed by one experienced reader. Results: Scan indications were initial staging (n = 12), biochemical recurrence (n = 27) and metastatic disease evaluation (n = 11). Most patients had ISUP grade group 3 or higher. Median PSA value was 2.7 ng/ml (IQR 0.7–12.0), and a minority of patients (28%) were currently treated with androgen deprivation therapy. [18F]PSMA-1007 uptake was significantly higher than [68Ga]Ga-PSMA-11 in local recurrence, nodal and distant metastases and most physiologic sites (including bone) except for urinary bladder which was significantly lower. [18F]PSMA-1007 upstaged local prostate staging in 5/17 patients, local recurrence in 3/33 patients, regional nodal disease in 3/50 patients and 1 distant metastasis (bladder). [68Ga]Ga-PSMA-11 upstaged regional nodal disease in 1/50 patients and distant metastasis in one patient (right adrenal). Overall AJCC prognostic stage was concordant in 46/50 (92%) patients, with two patients upstaged for both [18F]PSMA-1007 and [68Ga]Ga-PSMA-11. [18F]PSMA-1007 had more equivocal results (one regional node; six equivocal bone lesions, one of which was subsequently confirmed metastatic) than [68Ga]Ga-PSMA-11 (one equivocal local recurrence). Conclusion: Overall AJCC prognostic stage was similar (92%) between [18F]PSMA-1007 and [68Ga]Ga-PSMA-11. [18F]PSMA-1007 demonstrates higher uptake within involved nodes and distant metastases and most physiologic sites except urinary bladder which aided [18F]PSMA-1007 local staging of the prostate primary/local recurrence and regional nodal disease adjacent ureters. However, [18F]PSMA-1007 liver uptake obscured a solitary right adrenal metastasis, and more equivocal bone lesions were identified

    Simian Immunodeficiency Virus SIVrcm, a Unique CCR2-Tropic Virus, Selectively Depletes Memory CD4+ T Cells in Pigtailed Macaques through Expanded Coreceptor Usage In Vivo â–¿

    No full text
    Simian immunodeficiency virus SIVrcm, which naturally infects red-capped mangabeys (RCMs), is the only SIV that uses CCR2 as its main coreceptor due to the high frequency of a CCR5 deletion in RCMs. We investigated the dynamics of SIVrcm infection to identify specific pathogenic mechanisms associated with this major difference in SIV biology. Four pigtailed macaques (PTMs) were infected with SIVrcm, and infection was monitored for over 2 years. The dynamics of in vivo SIVrcm replication in PTMs was similar to that of other pathogenic and nonpathogenic lymphotropic SIVs. Plasma viral loads (VLs) peaked at 107 to 109 SIVrcm RNA copies/ml by day 10 postinoculation (p.i.). A viral set point was established by day 42 p.i. at 103 to 105 SIVrcm RNA copies/ml and lasted up to day 180 p.i., when plasma VLs decreased below the threshold of detection, with blips of viral replication during the follow-up. Intestinal SIVrcm replication paralleled that of plasma VLs. Up to 80% of the CD4+ T cells were depleted by day 28 p.i. in the gut. The most significant depletion (>90%) involved memory CD4+ T cells. Partial CD4+ T-cell restoration was observed in the intestine at later time points. Effector memory CD4+ T cells were the least restored. SIVrcm strains isolated from acutely infected PTMs used CCR2 coreceptor, as reported, but expansion of coreceptor usage to CCR4 was also observed. Selective depletion of effector memory CD4+ T cells is in contrast with predicted in vitro tropism of SIVrcm for macrophages and is probably due to expansion of coreceptor usage. Taken together, these findings emphasize the importance of understanding the selective forces driving viral adaptation to a new host

    Limited ability of humoral immune responses in control of viremia during infection with SIVsmmD215 strain

    No full text
    We investigated the impact of rhesus macaque (RM) B-cell depletion before inoculation with the isolate SIVsmmD215. Seven RMs were treated every 3 weeks with 50 mg/kg of an anti-CD20 antibody (rituximab) starting 7 days before inoculation for 2 (n = 4) and 5 (n = 3) months. Four control animals received no antibody. Three animals were completely depleted of CD20+ B cells, but 4 were only partially depleted of CD20 cells in the LNs and intestine. The decrease in antibody production was consistent with the efficacy of tissue CD20 depletion. Seroconversion and neutralizing antibody production was significantly delayed in animals showing complete tissue CD20 depletion and remained at low titers in all CD20-depleted RMs. Surprisingly, there was no significant difference in acute or chronic viral loads between CD20-depleted and control animal groups. There was a tendency for lower viral set points in CD20-depleted animals. At 6 weeks after inoculation, cellular immune responses were significantly stronger in CD20-depleted animals than in controls. There was no significant difference in survival between CD20-depleted and control animals. Our data suggest that a deficiency of Ab responses did not markedly affect viral replication or disease progression and that they may be compensated by more robust cellular responses
    corecore