126 research outputs found

    An Effective Ultrasound Video Communication System Using Despeckle Filtering and HEVC

    Get PDF
    The recent emergence of the high-efficiency video coding (HEVC) standard promises to deliver significant bitrate savings over current and prior video compression standards, while also supporting higher resolutions that can meet the clinical acquisition spatiotemporal settings. The effective application of HEVC to medical ultrasound necessitates a careful evaluation of strict clinical criteria that guarantee that clinical quality will not be sacrificed in the compression process. Furthermore, the potential use of despeckle filtering prior to compression provides for the possibility of significant additional bitrate savings that have not been previously considered. This paper provides a thorough comparison of the use of MPEG-2, H.263, MPEG-4, H.264/AVC, and HEVC for compressing atherosclerotic plaque ultrasound videos. For the comparisons, we use both subjective and objective criteria based on plaque structure and motion. For comparable clinical video quality, experimental evaluation on ten videos demonstrates that HEVC reduces bitrate requirements by as much as 33.2% compared to H.264/AVC and up to 71% compared to MPEG-2. The use of despeckle filtering prior to compression is also investigated as a method that can reduce bitrate requirements through the removal of higher frequency components without sacrificing clinical quality. Based on the use of three despeckle filtering methods with both H.264/AVC and HEVC, we find that prior filtering can yield additional significant bitrate savings. The best performing despeckle filter (DsFlsmv) achieves bitrate savings of 43.6% and 39.2% compared to standard nonfiltered HEVC and H.264/AVC encoding, respectively

    A Review of Error Resilience Techniques in Video Streaming

    Get PDF
    Abstract-Delivering video data of satisfactory quality over unreliable networks -such as the internet or wireless networks -is a demanding area which has received significant attention of the research community over the past few years. Given the fact that packet loss is inevitable and therefore the presence of errors granted, the effort is directed towards limiting the effect of these errors. A number of techniques have been developed to address this issue. This paper aims to summarize the most significant approaches for: error resilience, error concealment and joint encoder-decoder error control techniques, and to provide a thorough discussion of the benefits and drawbacks of these error control methods. Furthermore, two case studies of error resilience utilization are presented, namely Ad-hoc networks and Multimedia Broadcast Multiple Services (MBMS)

    Guest Editorial Cardiovascular Health Informatics: Risk Screening and Intervention

    Get PDF
    Despite enormous efforts to prevent cardiovascular disease (CVD) in the past, it remains the leading cause of death in most countries worldwide. Around two-thirds of these deaths are due to acute events, which frequently occur suddenly and are often fatal beforemedical care can be given. New strategies for screening and early intervening CVD, in addition to the conventional methods, are therefore needed in order to provide personalized and pervasive healthcare. In this special issue, selected emerging technologies in health informatics for screening and intervening CVDs are reported. These papers include reviews or original contributions on 1) new potential genetic biomarkers for screening CVD outcomes and high-throughput techniques for mining genomic data; 2) new imaging techniques for obtaining faster and higher resolution images of cardiovascular imaging biomarkers such as the cardiac chambers and atherosclerotic plaques in coronary arteries, as well as possible automatic segmentation, identification, or fusion algorithms; 3) new physiological biomarkers and novel wearable and home healthcare technologies for monitoring them in daily lives; 4) new personalized prediction models of plaque formation and progression or CVD outcomes; and 5) quantifiable indices and wearable systems to measure them for early intervention of CVD through lifestyle changes. It is hoped that the proposed technologies and systems covered in this special issue can result in improved CVD management and treatment at the point of need, offering a better quality of life to the patient

    Fast Localization of Optic Disc and Fovea in Retinal Images for Eye Disease Screening

    Get PDF
    ABSTRACT Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images

    Carotid Ultrasound Boundary Study (CUBS): An Open Multicenter Analysis of Computerized Intima–Media Thickness Measurement Systems and Their Clinical Impact

    Get PDF
    Common carotid intima–media thickness (CIMT) is a commonly used marker for atherosclerosis and is often computed in carotid ultrasound images. An analysis of different computerized techniques for CIMT measurement and their clinical impacts on the same patient data set is lacking. Here we compared and assessed five computerized CIMT algorithms against three expert analysts’ manual measurements on a data set of 1088 patients from two centers. Inter- and intra-observer variability was assessed, and the computerized CIMT values were compared with those manually obtained. The CIMT measurements were used to assess the correlation with clinical parameters, cardiovascular event prediction through a generalized linear model and the Kaplan–Meier hazard ratio. CIMT measurements obtained with a skilled analyst's segmentation and the computerized segmentation were comparable in statistical analyses, suggesting they can be used interchangeably for CIMT quantification and clinical outcome investigation. To facilitate future studies, the entire data set used is made publicly available for the community at http://dx.doi.org/10.17632/fpv535fss7.1

    Itch and skin rash from chocolate during fluoxetine and sertraline treatment: Case report

    Get PDF
    BACKGROUND: The skin contains a system for producing serotonin as well as serotonin receptors. Serotonin can also cause pruritus when injected into the skin. SSRI-drugs increase serotonin concentrations and are known to have pruritus and other dermal side effects. CASE PRESENTATION: A 46-year-old man consulted his doctor due to symptoms of depression. He did not suffer from any allergy but drinking red wine caused vasomotor rhinitis. Antidepressive treatment with fluoxetine 20 mg daily was initiated which was successful. After three weeks of treatment an itching rash appeared. An adverse drug reaction (ADR) induced by fluoxetine was suspected and fluoxetine treatment was discontinued. The symptoms disappeared with clemastine and betametasone treatment. Since the depressive symptoms returned sertraline medication was initiated. After approximately two weeks of sertraline treatment he noted an intense itching sensation in his scalp after eating a piece of chocolate cake. The itch spread to the arms, abdomen and legs and the patient treated himself with clemastine and the itch disappeared. He now realised that he had eaten a chocolate cake before this episode and remembered that before the first episode he had had a chocolate mousse dessert. He had never had any reaction from eating chocolate before and therefore reported this observation to his doctor. CONCLUSIONS: This case report suggests that there may be individuals that are very sensitive to increases in serotonin concentrations. Dermal side reactions to SSRI-drugs in these patients may be due to high activity in the serotonergic system at the dermal and epidermo-dermal junctional area rather than a hypersensitivity to the drug molecule itself

    Carotid Ultrasound Boundary Study (CUBS): An Open Multicenter Analysis of Computerized Intima–Media Thickness Measurement Systems and Their Clinical Impact

    Get PDF
    [Abstract] Common carotid intima–media thickness (CIMT) is a commonly used marker for atherosclerosis and is often computed in carotid ultrasound images. An analysis of different computerized techniques for CIMT measurement and their clinical impacts on the same patient data set is lacking. Here we compared and assessed five computerized CIMT algorithms against three expert analysts’ manual measurements on a data set of 1088 patients from two centers. Inter- and intra-observer variability was assessed, and the computerized CIMT values were compared with those manually obtained. The CIMT measurements were used to assess the correlation with clinical parameters, cardiovascular event prediction through a generalized linear model and the Kaplan–Meier hazard ratio. CIMT measurements obtained with a skilled analyst's segmentation and the computerized segmentation were comparable in statistical analyses, suggesting they can be used interchangeably for CIMT quantification and clinical outcome investigation. To facilitate future studies, the entire data set used is made publicly available for the community at http://dx.doi.org/10.17632/fpv535fss7.

    Virtual reality reusable e-resources for clinical skills training: a mixed-methods evaluation

    Get PDF
    Virtual reality has long existed, but its wider adoption in education is recent. Studies informed by theoretical underpinned co-creation frameworks and utilization of theoretical informed evaluations are scarce in literature. Thus, this study internationally evaluated the efficacy of three virtual reality reusable e-resources (VRReRs), co-created based on the ASPIRE framework, for teaching clinical skills to university students. The study followed a mixed-methods approach, combining SUS, SUS Presence Questionnaire, TAM, and UTAUT2 with a focus group discussion. Additionally, for one VRReR, a quantitative pre/post evaluation of knowledge and comparison with lecture notes followed. Results demonstrated moderately to highly usability, effectively facilitated a strong sense of presence, confidence while using them, and willingness to continue using VRReRs in the future, while increased knowledge of the learners, highlighted their effectiveness. Although some usability issues were identified, these were considered easy to address. This work evidence, in an international context, that co-created VR resources are highly acceptable and effective, similar to other types of digital or traditional resources developed through participatory inquiry paradigm. By leveraging the benefits of VR technology, VRReRs have the potential to transform and enhance the learning experience in the field of clinical skills, ultimately advancing the digitalization of higher education

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications
    corecore