14 research outputs found

    Evolution of Globus Pallidus Targeting for Parkinson\u27s and Dystonia Deep Brain Stimulation: A 15-Year Experience

    Get PDF
    Objective: The aim of this study is to evaluate the evolution of GPi DBS targeting. Methods: This retrospective, single-center study included patients implanted with GPi DBS leads for dystonia or PD during the years 2004 to 2018 at the University of Florida Fixel Institute for Neurological Diseases. Each patient underwent a high-resolution targeting study on the day prior to the surgery, which was fused with a high resolution CT scan that was acquired on the day of the procedure. Intraoperative target location was selected using a digitized 3D Schaltenbrand-Bailey atlas. All patients underwent a high-resolution head CT scan without contrast approximately one month after lead implantation and accurate measurement of neuroanatomical lead position was acquired after fusion of pre-operative and post-operative image studies. Results: We analyzed 253 PD patients with 352 leads and 80 dystonia patients with 141 leads. During 15 years of follow-up, lead locations in the PD group migrated more laterally (beta = 0.09, p \u3c 0.0001), posteriorly [slope (beta) = 0.04, p \u3c 0.05], and dorsally (beta = 0.07, p \u3c 0.001), whereas leads in the dystonia group did not significantly change position aside from a trend in the dorsal direction (beta = 0.06, p = 0.053). Conclusion: The evolving target likely results from multiple factors including improvements in targeting techniques and clinical feedback intraoperatively and post-operatively. Our demonstrates the potential importance of a systematic post-operative DBS lead measurement protocol to ensure quality control and to inform and optimize DBS programming

    Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies

    Get PDF
    We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank

    Mass spectrometry imaging for plant biology: a review

    Get PDF

    Occurrence Of Dysphagia Following Botulinum Toxin Injection In Parkinsonism-Related Cervical Dystonia: A Retrospective Study

    No full text
    Background: The aim was to compare the occurrence of post-injection dysphagia in parkinsonism-related cervical dystonia (PRCD) versus cervical dystonia (CD) of other etiologies (non-PRCD). A secondary objective was to explore potential clinical differences between PRCD and non-PRCD and their respective responses to botulinum toxin (BoNT). Methods: A cross-sectional chart review was carried out of patients treated for CD with Onabotulinumtoxin A at the University of Florida. We collected demographic information, dose of BoNT injected, patient-reported presence of dysphagia as a side effect, patient-perceived duration of benefit and efficacy according to the Clinical Global Impression Scale (CGIS). Results: Of the 144 patients included, 24 patients were diagnosed with PRCD and 120 were diagnosed as non-PRCD. Data analysis showed no significant differences in number of weeks of benefit from BoNT (PRCD 9.1±3.7 versus non-PRCD 9.4±3.7 weeks, p = 0.830), BoNT dosage (PRCD 235.0±95.6 versus non-PRCD 263.7±101.3 units, p = 0.181), median CGIS score (median = 2 or much improved for both groups, p = 0.88), or the presence of dysphagia after BoNT (PRCD 17% versus non-PRCD 19%, p = 0.753, n = 132). In a subgroup analysis of the non-PRCD group, patients who experienced dysphagia were older than those who did not (63.9±8.9 years versus 58.1±14.4 years, p = 0.02). Discussion: Despite an increased baseline risk of dysphagia in patients with PRCD, BoNT appears to be equally safe and equally beneficial in PRCD and non-PRCD patients
    corecore