1,470 research outputs found

    Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes

    Get PDF
    Carbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites. With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particular features on a surface to be targeted and models of structure–activity to be developed and tested on a wide range of length scales and time scales. When high resolution electrochemical imaging data are combined with information from other microscopy and spectroscopy techniques applied to the same area of an electrode surface, in a correlative-electrochemical microscopy approach, highly resolved and unambiguous pictures of electrode activity are revealed that provide new views of the electrochemical properties of carbon materials. With a focus on major sp2 carbon materials, graphite, graphene, and single walled carbon nanotubes (SWNTs), this Account summarizes recent advances that have changed understanding of interfacial electrochemistry at carbon electrodes including: (i) Unequivocal evidence for the high activity of the basal surface of highly oriented pyrolytic graphite (HOPG), which is at least as active as noble metal electrodes (e.g., platinum) for outer-sphere redox processes. (ii) Demonstration of the high activity of basal plane HOPG toward other reactions, with no requirement for catalysis by step edges or defects, as exemplified by studies of proton-coupled electron transfer, redox transformations of adsorbed molecules, surface functionalization via diazonium electrochemistry, and metal electrodeposition. (iii) Rationalization of the complex interplay of different factors that determine electrochemistry at graphene, including the source (mechanical exfoliation from graphite vs chemical vapor deposition), number of graphene layers, edges, electronic structure, redox couple, and electrode history effects. (iv) New methodologies that allow nanoscale electrochemistry of 1D materials (SWNTs) to be related to their electronic characteristics (metallic vs semiconductor SWNTs), size, and quality, with high resolution imaging revealing the high activity of SWNT sidewalls and the importance of defects for some electrocatalytic reactions (e.g., the oxygen reduction reaction). The experimental approaches highlighted for carbon electrodes are generally applicable to other electrode materials and set a new framework and course for the study of electrochemical and interfacial processes

    Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction

    Get PDF
    The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing ‘pseudo-single-crystal’ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale

    The effect of major depression on participation in preventive health care activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to determine whether major depressive episodes (MDE) contribute to a lower rate of participation in three prevention activities: blood pressure checks, mammograms and Pap tests.</p> <p>Methods</p> <p>The data source for this study was the Canadian National Population Health Survey (NPHS), a longitudinal study that started in 1994 and has subsequently re-interviewed its participants every two years. The NPHS included a short form version of the Composite International Diagnostic Interview (CIDI-SF) to assess past year MDE and also collected data on participation in preventive activities. Initially, we examined whether respondents with MDE in a particular year were less likely to participate in screening during that same year. In order to assess whether MDE negatively altered the pattern of participation, those successfully screened at the baseline interview in 1994 were identified and divided into cohorts depending on their MDE status. Proportional hazard models were used to quantify the effect of MDE on subsequent participation in screening.</p> <p>Results</p> <p>No effect of MDE on participation in the three preventive activities was identified either in the cross-sectional or longitudinal analysis. Adjustment for a set of relevant covariates did not alter this result.</p> <p>Conclusion</p> <p>Whereas MDE might be expected to reduce the frequency of participation in screening activities, no evidence for this was found in the current analysis. Since people with MDE may contact the health system more frequently, this may offset any tendency of the illness itself to reduce participation in screening.</p

    Cumulate causes for the low contents of sulfide-loving elements in the continental crust

    Get PDF
    Despite the economic importance of chalcophile (sulfide-loving) and siderophile (metal-loving) elements (CSEs), it is unclear how they become enriched or depleted in the continental crust, compared with the oceanic crust. This is due in part to our limited understanding of the partitioning behaviour of the CSEs. Here I compile compositional data for mid-ocean ridge basalts and subduction-related volcanic rocks. I show that the mantle-derived melts that contribute to oceanic and continental crust formation rarely avoid sulfide saturation during cooling in the crust and, on average, subduction-zone magmas fractionate sulfide at the base of the continental crust prior to ascent. Differentiation of mantle-derived melts enriches lower crustal sulfide- and silicate-bearing cumulates in some CSEs compared with the upper crust. This storage predisposes the cumulate-hosted compatible CSEs (such as Cu and Au) to be recycled back into the mantle during subduction and delamination, resulting in their low contents in the bulk continental crust and potentially contributing to the scarcity of ore deposits in the upper continental crust. By contrast, differentiation causes the upper oceanic and continental crust to become enriched in incompatible CSEs (such as W) compared with the lower oceanic and continental crust. Consequently, incompatible CSEs are predisposed to become enriched in subduction-zone magmas that contribute to continental crust formation and are less susceptible to removal from the continental crust via delamination compared with the compatible CSEs

    Near and Mid-IR Photometry of the Pleiades, and a New List of Substellar Candidate Members

    Get PDF
    We make use of new near and mid-IR photometry of the Pleiades cluster in order to help identify proposed cluster members. We also use the new photometry with previously published photometry to define the single-star main sequence locus at the age of the Pleiades in a variety of color-magnitude planes. The new near and mid-IR photometry extend effectively two magnitudes deeper than the 2MASS All-Sky Point Source catalog, and hence allow us to select a new set of candidate very low mass and sub-stellar mass members of the Pleiades in the central square degree of the cluster. We identify 42 new candidate members fainter than Ks =14 (corresponding to 0.1 Mo). These candidate members should eventually allow a better estimate of the cluster mass function to be made down to of order 0.04 solar masses. We also use new IRAC data, in particular the images obtained at 8 um, in order to comment briefly on interstellar dust in and near the Pleiades. We confirm, as expected, that -- with one exception -- a sample of low mass stars recently identified as having 24 um excesses due to debris disks do not have significant excesses at IRAC wavelengths. However, evidence is also presented that several of the Pleiades high mass stars are found to be impacting with local condensations of the molecular cloud that is passing through the Pleiades at the current epoch.Comment: Accepted to ApJS; data tables and embedded-figure version available at http://spider.ipac.caltech.edu/staff/stauffer/pleiades07

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    Factors affecting female space use in ten populations of prairie chickens

    Get PDF
    Citation: Winder, V. L., Carrlson, K. M., Gregory, A. J., Hagen, C. A., Haukos, D. A., Kesler, D. C., . . . Sandercock, B. K. (2015). Factors affecting female space use in ten populations of prairie chickens. Ecosphere, 6(9), 17. doi:10.1890/es14-00536.1Conservation of wildlife depends on an understanding of the interactions between animal movements and key landscape factors. Habitat requirements of wide-ranging species often vary spatially, but quantitative assessment of variation among replicated studies at multiple sites is rare. We investigated patterns of space use for 10 populations of two closely related species of prairie grouse: Greater Prairie-Chickens (Tympanuchus cupido) and Lesser Prairie-Chickens (T. pallidicinctus). Prairie chickens require large, intact tracts of native grasslands, and are umbrella species for conservation of prairie ecosystems in North America. We used resource utilization functions to investigate space use by female prairie chickens during the 6-month breeding season from March through August in relation to lek sites, habitat conditions, and anthropogenic development. Our analysis included data from 382 radio-marked individuals across a major portion of the extant range. Our project is a unique opportunity to study comparative space use of prairie chickens, and we employed standardized methods that facilitated direct comparisons across an ecological gradient of study sites. Median home range size of females varied similar to 10-fold across 10 sites (3.6-36.7 km(2)), and home ranges tended to be larger at sites with higher annual precipitation. Proximity to lek sites was a strong and consistent predictor of space use for female prairie chickens at all 10 sites. The relative importance of other predictors of space use varied among sites, indicating that generalized habitat management guidelines may not be appropriate for these two species. Prairie chickens actively selected for prairie habitats, even at sites where similar to 90% of the land cover within the study area was prairie. A majority of the females monitored in our study (>95%) had activity centers within 5 km of leks, suggesting that conservation efforts can be effectively concentrated near active lek sites. Our data on female space use suggest that lek surveys of male prairie chickens can indirectly assess habitat suitability for females during the breeding season. Lek monitoring and surveys for new leks provide information on population trends, but can also guide management actions aimed at improving nesting and brood-rearing habitats

    The Infrared Array Camera (IRAC) for the Spitzer Space Telescope

    Full text link
    The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Spitzer Space Telescope. IRAC is a four-channel camera that obtains simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 microns. Two nearly adjacent 5.2x5.2 arcmin fields of view in the focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256x256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. IRAC is a powerful survey instrument because of its high sensitivity, large field of view, and four-color imaging. This paper summarizes the in-flight scientific, technical, and operational performance of IRAC.Comment: 7 pages, 3 figures. Accepted for publication in the ApJS. A higher resolution version is at http://cfa-www.harvard.edu/irac/publication
    corecore