799 research outputs found

    Z(2)-Singlino Dark Matter in a Portal-Like Extension of the Minimal Supersymmetric Standard Model.

    Get PDF
    We propose a Z2-stabilized singlino () as a dark matter candidate in extended and R-parity violating versions of the supersymmetric standard model. interacts with visible matter via a heavy messenger field S, which results in a supersymmetric version of the Higgs portal interaction. The relic abundance of can account for cold dark matter if the messenger mass satisfies GeV. Our model can be implemented in many realistic supersymmetric models such as the next-to-minimal supersymmetric (SUSY) standard model and nearly minimal SUSY standard model

    Adaptation in integrated assessment modeling: where do we stand?

    Get PDF
    Adaptation is an important element on the climate change policy agenda. Integrated assessment models, which are key tools to assess climate change policies, have begun to address adaptation, either by including it implicitly in damage cost estimates, or by making it an explicit control variable. We analyze how modelers have chosen to describe adaptation within an integrated framework, and suggest many ways they could improve the treatment of adaptation by considering more of its bottom-up characteristics. Until this happens, we suggest, models may be too optimistic about the net benefits adaptation can provide, and therefore may underestimate the amount of mitigation they judge to be socially optimal. Under some conditions, better modeling of adaptation costs and benefits could have important implications for defining mitigation targets. © Springer Science+Business Media B.V. 2009

    A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy

    Get PDF
    Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, quantum coding does not alter normal relaxation, but rather converts the state of a ``data'' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on 13C-labeled alanine, using gradient-diffusion methods to implement these idealized decoherence models. Quantum error correction in weakly polarized systems requires that the ancilla spins be prepared in a pseudo-pure state relative to the data spin, which entails a loss of signal that exceeds any potential gain through error correction. Nevertheless, this study shows that quantum coding can be used to validate theoretical decoherence mechanisms, and to provide detailed information on correlations in the underlying NMR relaxation dynamics.Comment: 33 pages plus 6 figures, LaTeX article class with amsmath & graphicx package

    Saturation of a spin 1/2 particle by generalized Local control

    Full text link
    We show how to apply a generalization of Local control design to the problem of saturation of a spin 1/2 particle by magnetic fields in Nuclear Magnetic Resonance. The generalization of local or Lyapunov control arises from the fact that the derivative of the Lyapunov function does not depend explicitly on the control field. The second derivative is used to determine the local control field. We compare the efficiency of this approach with respect to the time-optimal solution which has been recently derived using geometric methods.Comment: 12 pages, 4 figures, submitted to new journal of physics (2011

    Structure and belonging: Pathways to success for underrepresented minority and women PhD students in STEM fields

    Get PDF
    The advancement of underrepresented minority and women PhD students to elite postdoctoral and faculty positions in the STEM fields continues to lag that of majority males, despite decades of efforts to mitigate bias and increase opportunities for students from diverse backgrounds. In 2015, the National Science Foundation Alliance for Graduate Education and the Professoriate (NSF AGEP) California Alliance (Berkeley, Caltech, Stanford, UCLA) conducted a wide-ranging survey of graduate students across the mathematical, physical, engineering, and computer sciences in order to identify levers to improve the success of PhD students, and, in time, improve diversity in STEM leadership positions, especially the professoriate. The survey data were interpreted via path analysis, a method that identifies significant relationships, both direct and indirect, among various factors and outcomes of interest. We investigated two important outcomes: publication rates, which largely determine a new PhD student’s competitiveness in the academic marketplace, and subjective well-being. Women and minority students who perceived that they were well-prepared for their graduate courses and accepted by their colleagues (faculty and fellow students), and who experienced well-articulated and structured PhD programs, were most likely to publish at rates comparable to their male majority peers. Women PhD students experienced significantly higher levels of distress than their male peers, both majority and minority, while both women and minority student distress levels were mitigated by clearly-articulated expectations, perceiving that they were well-prepared for graduate level courses, and feeling accepted by their colleagues. It is unclear whether higher levels of distress in women students is related directly to their experiences in their STEM PhD programs. The findings suggest that mitigating factors that negatively affect diversity should not, in principle, require the investment of large resources, but rather requires attention to the local culture and structure of individual STEM PhD programs

    The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis

    Get PDF
    We propose the minimal, lepton-number conserving, SU(3)xSU(2)xU(1) gauge-singlet, or phantom, extension of the Standard Model. The extension is natural in the sense that all couplings are of O(1) or forbidden due to a phantom sector global U(1)_D symmetry, and basically imitates the standard Majorana see-saw mechanism. Spontaneous breaking of the U(1)_D symmetry triggers consistent electroweak gauge symmetry breaking only if it occurs at a scale compatible with small Dirac neutrino masses and baryogenesis through Dirac leptogenesis. Dirac leptogenesis proceeds through the usual out-of-equilibrium decay scenario, leading to left and right-handed neutrino asymmetries that do not fully equilibrate after they are produced. The model contains two physical Higgs bosons and a massless Goldstone boson. The existence of the Goldstone boson suppresses the Higgs to bb branching ratio and instead the Higgs bosons will mainly decay to invisible Goldstone and/or to visible vector boson pairs. In a representative scenario, we estimate that with 30 fb^-1 integrated luminosity, the LHC could discover this invisibly decaying Higgs, with mass ~120 GeV. At the same time a significantly heavier, partner Higgs boson with mass ~210 GeV could be found through its vector boson decays. Electroweak constraints as well as astrophysical and cosmological implications are analysed and discussed.Comment: 21 pages, 4 figures. Corrected typos and added references. To appear in JHE

    Ground-based terahertz CO spectroscopy towards Orion

    Get PDF
    Using a superconductive hot-electron bolometer heterodyne receiver on the 10-m Heinrich Hertz Telescope on Mount Graham, Arizona, we have obtained velocity-resolved 1.037 THz CO (J = 9 → 8) spectra toward several positions along the Orion Molecular Cloud (OMC-1) ridge. We confirm the general results of prior observations of high-J CO lines that show that the high temperature, T_(kin) ≥ 130 K, high density molecular gas, N ≥ 10^6 cm^(-3), is quite extended, found along a ~ 4' region centered on BN/KL. However, our observations have significantly improved angular resolution, and with a beam size of θ_(FWHP) we are able to spatially and kinematically discriminate the emission originating in the extended quiescent ridge from the very strong and broadened emission originating in the compact molecular outflow. The ridge emission very close to the BN/KL region appears to originate from two distinct clouds along the line of sight with v_(LSR) ≈ +6(1)kms^(-1) and ≈ +10(1)km s^(-1). The former component dominates the emission to the south of BN/KL and the latter to the north, with a turnover point coincident with or near BN/KL. Our evidence precludes a simple rotation of the inner ridge and lends support to a model in which there are multiple molecular clouds along the line of sight towards the Orion ridge

    Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission

    Get PDF
    Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth\u27s net primary production. For 13. years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone

    Structure and belonging: Pathways to success for underrepresented minority and women PhD students in STEM fields

    Get PDF
    The advancement of underrepresented minority and women PhD students to elite postdoctoral and faculty positions in the STEM fields continues to lag that of majority males, despite decades of efforts to mitigate bias and increase opportunities for students from diverse backgrounds. In 2015, the National Science Foundation Alliance for Graduate Education and the Professoriate (NSF AGEP) California Alliance (Berkeley, Caltech, Stanford, UCLA) conducted a wide-ranging survey of graduate students across the mathematical, physical, engineering, and computer sciences in order to identify levers to improve the success of PhD students, and, in time, improve diversity in STEM leadership positions, especially the professoriate. The survey data were interpreted via path analysis, a method that identifies significant relationships, both direct and indirect, among various factors and outcomes of interest. We investigated two important outcomes: publication rates, which largely determine a new PhD student’s competitiveness in the academic marketplace, and subjective well-being. Women and minority students who perceived that they were well-prepared for their graduate courses and accepted by their colleagues (faculty and fellow students), and who experienced well-articulated and structured PhD programs, were most likely to publish at rates comparable to their male majority peers. Women PhD students experienced significantly higher levels of distress than their male peers, both majority and minority, while both women and minority student distress levels were mitigated by clearly-articulated expectations, perceiving that they were well-prepared for graduate level courses, and feeling accepted by their colleagues. It is unclear whether higher levels of distress in women students is related directly to their experiences in their STEM PhD programs. The findings suggest that mitigating factors that negatively affect diversity should not, in principle, require the investment of large resources, but rather requires attention to the local culture and structure of individual STEM PhD programs
    • …
    corecore