50 research outputs found

    De novo unbalanced translocations have a complex history/aetiology

    Get PDF
    We investigated 52 cases of de novo unbalanced translocations, consisting in a terminally deleted or inverted-duplicated deleted (inv-dup del) 46th chromosome to which the distal portion of another chromosome or its opposite end was transposed. Array CGH, whole-genome sequencing, qPCR, FISH, and trio genotyping were applied. A biparental origin of the deletion and duplication was detected in 6 cases, whereas in 46, both imbalances have the same parental origin. Moreover, the duplicated region was of maternal origin in more than half of the cases, with 25% of them showing two maternal and one paternal haplotype. In all these cases, maternal age was increased. These findings indicate that the primary driver for the occurrence of the de novo unbalanced translocations is a maternal meiotic non-disjunction, followed by partial trisomy rescue of the supernumerary chromosome present in the trisomic zygote. In contrast, asymmetric breakage of a dicentric chromosome, originated either at the meiosis or postzygotically, in which the two resulting chromosomes, one being deleted and the other one inv-dup del, are repaired by telomere capture, appears at the basis of all inv-dup del translocations. Notably, this mechanism also fits with the origin of some simple translocations in which the duplicated region was of paternal origin. In all cases, the signature at the translocation junctions was that of non-homologous end joining (NHEJ) rather than non-allelic homologous recombination (NAHR). Our data imply that there is no risk of recurrence in the following pregnancies for any of the de novo unbalanced translocations we discuss here

    The role of the European Society of Human Genetics in delivering genomic education

    Get PDF
    The European Society of Human Genetics (ESHG) was founded in 1967 as a professional organisation for members working in genetics in clinical practice, research and education. The Society seeks the integration of scientific research and its implementation into clinical practice and the education of specialists and the public in all areas of medical and human genetics. The Society works to do this through many approaches, including educational sessions at the annual conference; training courses in general and specialist areas of genetics; an online resource of educational materials (EuroGEMS); and a mentorship scheme. The ESHG Education Committee is implementing new approaches to expand the reach of its educational activities and portfolio. With changes in technology, appreciation of the utility of genomics in healthcare and the public's and patients' increased awareness of the role of genomics, this review will summarise how the ESHG is adapting to deliver innovative educational activity.Molecular Technology and Informatics for Personalised Medicine and Healt

    A SRY-HMG box frame shift mutation inherited from a mosaic father with a mild form of testicular dysgenesis syndrome in Turner syndrome patient

    Get PDF
    Background: Sex determining factor (SRY) located on the short arm of the Y chromosome, plays an important role in initiating male sex determination, resulting in development of testicular tissue. Presence of the SRY gene in females results in XY sex reversal and increased risk of gonadal germ cell tumours if the karyotype also includes the so-called GonadoBlastoma on the Y chromosome (GBY) region. The majority of mutations within the SRY gene are de novo affecting only a single individual in the family. The mutations within the high-mobility group (HMG) region have the potential to affect its DNA binding activity.Case Presentation: We performed G- and R-banding cytogenetic analysis of the patient and her family members including her father. We also performed molecular genetic analysis of SRY gene. Cytogenetic analysis in the patient (Turner Syndrome) revealed the mosaic karyotype as 45, X/46, XY (79%/21% respectively) while her father (milder features with testicular dysgenesis syndrome) has a normal male karyotype (46, XY). Using molecular approach, we screened the patient and her father for mutations in the SRY gene. Both patient and her father showed the same deletion of cytosine within HMG box resulting in frame shift mutation (L94fsX180), the father in a mosaic pattern. Histological examination of the gonads from the patient revealed the presence of gonadoblastoma formation, while the father presented with oligoasthenozoospermia and a testicular seminoma. The frameshift mutation at this codon is novel, and may result in a mutated SRY protein.Conclusion: Our results suggest that lack of a second sex chromosome in majority cells of the patient may have triggered the short stature and primary infertility, and the mutated SRY protein may be associated with the development of gonadoblastoma. It is of importance to note that mosaic patients without a SRY mutation also have a risk for malignant germ cell tumors

    The Role of the European Society of Human Genetics in Delivering Genomic Education

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-04-12, accepted 2021-07-22, epub 2021-09-03Publication status: PublishedThe European Society of Human Genetics (ESHG) was founded in 1967 as a professional organisation for members working in genetics in clinical practice, research and education. The Society seeks the integration of scientific research and its implementation into clinical practice and the education of specialists and the public in all areas of medical and human genetics. The Society works to do this through many approaches, including educational sessions at the annual conference; training courses in general and specialist areas of genetics; an online resource of educational materials (EuroGEMS); and a mentorship scheme. The ESHG Education Committee is implementing new approaches to expand the reach of its educational activities and portfolio. With changes in technology, appreciation of the utility of genomics in healthcare and the public’s and patients’ increased awareness of the role of genomics, this review will summarise how the ESHG is adapting to deliver innovative educational activity

    Y-chromosomal diversity in Europe is clinal and influenced primarily by geography, rather than by language

    Get PDF
    Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant dines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift

    Klinische Bedeutung von TP53-Alterationen beim Nebennierenrindenkarzinom (ACC)

    No full text
    corecore