703 research outputs found

    Weighing the black holes in ultraluminous X-ray sources through timing

    Full text link
    We describe a new method to estimate the mass of black holes in Ultraluminous X-ray Sources (ULXs). The method is based on the recently discovered ``variability plane'', populated by Galactic stellar-mass black-hole candidates (BHCs) and supermassive active galactic nuclei (AGNs), in the parameter space defined by the black-hole mass, accretion rate and characteristic frequency. We apply this method to the two ULXs from which low-frequency quasi-periodic oscillations have been discovered, M82 X-1 and NGC 5408 X-1. For both sources we obtain a black-hole mass in the range 100~1300 Msun, thus providing evidence for these two sources to host an intermediate-mass black hole.Comment: 5 pages, 2 figures, Accepted by MNRA

    X-ray Observations of XSS J12270-4859 in a New Low State: A Transformation to a Disk-Free Rotation-Powered Pulsar Binary

    Get PDF
    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270--4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing "redback" system that hosts an active rotation-powered millisecond pulsar. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.5' from XSS J12270--4859 is unlikely to be associated, and is probably a previously uncatalogued galaxy cluster.Comment: 8 pages, 6 figures; accepted for publication in the Astrophysical Journa

    Enhancing the Sustainability of the Aviation Industry: Airlines’ Commitment to “Green” Practices

    Get PDF
    The aviation industry represents an important polluter, being responsible for increasing environmental impacts on global scale. Aiming to approach the adoption of suitable policies in the aviation industry towards the achievement of the national and international sustainability goals, the present research tackles airlines’ commitment to aviation-related environmental issues, as well as their willingness to adopt sustainable aviation fuel (i.e., bio jet fuel) and sustainable development strategies, focusing on those companies operating flights in the Karol WojtyƂa Airport (Bari, Italy). The paper adopts the χ2 test and the logistic regression to investigate three different hypotheses related to airlines’ headquarters, carriers’ typology (i.e., low-cost or not, flag carriers or not) and years of service. Results outline that traditional airlines, either flag carriers or not, as well as South and North American companies, are more likely to be aware of aviation environmental consequences, publishing environmental reports and offering to passengers the chance to participate to climate change reduction (e.g., through online carbon offset programs or more expensive ticket to produce bio jet fuels). In addition, airlines transiting in Karol WojtyƂa Airport show a small willingness to share information through environmental reports and are scarcely intentioned to make use of bio jet fuels, confirming that low-cost companies are still less attentive towards aviation environmental issues. The present research contributes to the empirical studies on sustainable aviation and carriers’ commitment to environmental strategies, highlighting the need to enhance carbon offsets programs and digital technologies as the online compensation of CO2 emissions

    Mapping the QCD Phase Transition with Accreting Compact Stars

    Get PDF
    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ``phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the Omega-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a change in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond X-ray pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the Omega-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXP's with sufficiently accurate determination of their masses and spin frequencies.Comment: 8 pages, 3 figures, to appear in Proceedings of the Conference on "A Decade of Accreting Millisecond X-Ray Pulsars, Amsterdam, April 14-18, 200

    In Situ Nanomechanical Characterization Techniques for Soft Bioelectronic Interfaces and Their Building Blocks

    Get PDF
    Soft bioelectronic interfaces constitute a paradigm shift for biomedicaldevices. High-resolution monitoring and stimulation of physiologicalprocesses in vivo are becoming possible with minimally invasive devicesoperated without inflicting tissue damage or discomfort over prolongedtimescales. However, the development and commercialization of suchinterfaces still must address significant challenges. Biological tissue issubjected to continuous motion and the related device deformations caneasily trigger fracture or delamination of the device components, puttinglong-term durability of soft implants at risk. In this review, an overview ofexperimental techniques for testing mechanical properties and failuremechanisms of soft bioelectronic devices at the nanoscale while thedeformation takes place (in situ) is provided. Through the tensile test,bending test, nanoindentation, and micropillar compression test, precisemeasurements of the mechanical properties of individual building blocks andthe interfaces themselves can be obtained. Such parameters are crucial todesign, model, and optimize the device’s performance. Then, recent examplesof how this information guides design and optimization of soft bioelectronicinterfaces and devices for healthcare, robotics, and human–machineinterfaces is provided. Last of all, future research that is needed to fullyachieve long-term soft bioelectronic interfaces for integration with the humanbody is discussed

    Do Patients with Bronchiectasis Have an Increased Risk of Developing Lung Cancer? A Systematic Review

    Get PDF
    Background: Initial evidence supports the hypothesis that patients with non-cystic fibrosis bronchiectasis (NCFB) have a higher risk of lung cancer. We systematically reviewed the available literature to define the characteristics of lung malignancies in patients with bronchiectasis and the characteristics of patients who develop bronchiectasis-associated lung cancer. Method: This study was performed based on the PRISMA guidelines. The review protocol was registered in PROSPERO. Results: The frequency rates of lung cancer in patients with NCFB ranged from 0.93% to 8.0%. The incidence rate was 3.96. Cancer more frequently occurred in the elderly and males. Three studies found an overall higher risk of developing lung cancer in the NCFB population compared to the non-bronchiectasis one, and adenocarcinoma was the most frequently reported histological type. The effect of the co-existence of NCFB and COPD was unclear. Conclusions: NCFB is associated with a higher risk of developing lung cancer than individuals without NCFB. This risk is higher for males, the elderly, and smokers, whereas concomitant COPD’s effect is unclear

    Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy

    Get PDF
    Peripheral pulmonary lesions (PPLs) are frequent incidental findings in subjects when performing chest radiographs or chest computed tomography (CT) scans. When a PPL is identified, it is necessary to proceed with a risk stratification based on the patient profile and the characteristics found on chest CT. In order to proceed with a diagnostic procedure, the first-line examination is often a bronchoscopy with tissue sampling. Many guidance technologies have recently been developed to facilitate PPLs sampling. Through bronchoscopy, it is currently possible to ascertain the PPL’s benign or malignant nature, delaying the therapy’s second phase with radical, supportive, or palliative intent. In this review, we describe all the new tools available: from the innovation of bronchoscopic instrumentation (e.g., ultrathin bronchoscopy and robotic bronchoscopy) to the advances in navigation technology (e.g., radial-probe endobronchial ultrasound, virtual navigation, electromagnetic navigation, shape-sensing navigation, cone-beam computed tomography). In addition, we summarize all the PPLs ablation techniques currently under experimentation. Interventional pulmonology may be a discipline aiming at adopting increasingly innovative and disruptive technologies

    Binary evolution with LOFT

    Full text link
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of very faint X-ray binaries, orbital period distribution of black hole X-ray binaries and neutron star spin up. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected

    Picosecond q-switched 1064/532 nm laser in tattoo removal. our single center experience

    Get PDF
    Background: Tattoo removal is becoming increasingly popular, and Q-switched lasers represent the gold standard in the treatment of this condition. In this study, we report our experience with a new Q-switched picosecond laser device, evaluating its effectiveness and safety. Methods: A total of 34 patients asking for tattoo removal were consecutively enrolled in this open study. The clinicians decided on operating settings based on the Fitzpatrick phototype, the type of tattoo, and the tattoo location. A maximum of seven sessions, with a minimum interval of eight weeks between each session, were performed. At the six month follow-up visit following the last treatment session, patient satisfaction was assessed using a visual analogue scale and two dermatologists evaluated the aesthetic outcome based on pictures taken before and after treatment. Results: A total of 34 patients were included and analyzed: 17 females (50%) and 17 males (50%). The mean patient age was 43.6 ± 11 years. Participants’ Fitzpatrick skin type ranged from II to IV. The mean number of treatment sessions performed was 3.3 ± 2.0 per patient. Over 40% of patients showed complete removal of the tattoo, with most of the patients indicating satisfaction with the treatment. Conclusions: The Q-switched 1064/532 nm laser may be considered the gold standard treatment for tattoo removal. Picosecond pulses seem to guarantee fewer sessions and excellent results when compared to other laser systems in tattoo removal

    Multi-wavelength observations of 1RXH J173523.7-354013: revealing an unusual bursting neutron star

    Get PDF
    On 2008 May 14, the Burst Alert Telescope aboard the Swift mission triggered on a type-I X-ray burst from the previously unclassified ROSAT object 1RXH J173523.7-354013, establishing the source as a neutron star X-ray binary. We report on X-ray, optical and near-infrared observations of this system. The X-ray burst had a duration of ~2 h and belongs to the class of rare, intermediately long type-I X-ray bursts. From the bolometric peak flux of ~3.5E-8 erg/cm^2/s, we infer a source distance of D<9.5 kpc. Photometry of the field reveals an optical counterpart that declined from R=15.9 during the X-ray burst to R=18.9 thereafter. Analysis of post-burst Swift/XRT observations, as well as archival XMM-Newton and ROSAT data suggests that the system is persistent at a 0.5-10 keV luminosity of ~2E35 (D/9.5 kpc)^2 erg/s. Optical and infrared photometry together with the detection of a narrow Halpha emission line (FWHM=292+/-9 km/s, EW=-9.0+/-0.4 Angstrom) in the optical spectrum confirms that 1RXH J173523.7-354013 is a neutron star low-mass X-ray binary. The Halpha emission demonstrates that the donor star is hydrogen-rich, which effectively rules out that this system is an ultra-compact X-ray binary.Comment: Accepted for publication in MNRAS, 13 pages, 6 figures, 5 table
    • 

    corecore