130 research outputs found

    Properties of poly(vinyl alcohol) films as determined by thermal curing and addition of polyfunctional organic acids

    Get PDF
    The aim of the study was to assess the effect of the addition of citric and malic acid and heat curing on the mechanical, physical and optical properties of poly(vinyl alcohol) (PVOH) films. The addition of the organic acids without successive thermal treatments has a mere plasticising effect, while their application with heat curing has a combined crosslinking and plasticising effect. While conventional plasticizers and crosslinkers improve either extensibility or tensile strength of films, respectively, the addition of citric and malic acid coupled with heat curing determined good tensile strength and extensibility. Hydrophilicity was significantly reduced by thermal curing and even further reduced with the organic acids addition. The high transparency of the PVOH films was not affected either by heat-curing, acid addition and their combination, while the use of high curing temperature coupled with acid addition caused a slight yellowing of the films. The use of citric and malic acid in combination with thermal curing is a viable strategy for tailoring the performances of PVOH films thus broadening their spectrum of application

    Mitigation of Acrylamide Content in Biscuits through Combined Physical and Chemical Strategies

    Get PDF
    Acrylamide in biscuits represents a major concern. This research work was aimed at modifying the current formulation of biscuits to reduce the acrylamide content while maintaining the chemical, physical, and sensory characteristics of the original product. A strategy based on the FoodDrinkEurope Acrylamide Toolbox was adopted. The content of the leavening agent ammonium bicarbonate, the baking temperature program, and the time duration of steam released during the baking process were the three factors evaluated through a factorial design of experiment. The partial replacement of ammonium bicarbonate (from 9.0 g to 1.5 g per 500 g of flour) with sodium bicarbonate (from 4.5 g to 12.48 g), lowering of the temperature in the central phase of the baking process (from 170 degrees C to 150 degrees C), and the release of steam for 3 min resulted in an 87.2% reduction in acrylamide concentration compared to biscuits of reference. CIELab color indices and a(w) were the parameters that showed the most significant correlation with acrylamide concentration in biscuits and could, therefore, become markers to predict the acrylamide content along production lines for an instant evaluation

    Improvement of Paper Resistance against Moisture and Oil by Coatings with Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and Polycaprolactone (PCL)

    Get PDF
    Surface hydrophobicity and grease resistance of paper may be achieved by the application of coatings usually derived from fossil-oil resources. However, poor recyclability and environmental concerns on generated waste has increased interest in the study of alternative paper coatings. This work focuses on the study of the performances offered by two different biopolymers, poly(3hydroxybutyrate-co-3hydroxyvalerate) (PHBV) and polycaprolactone (PCL), also assessing the effect of a plasticizer (PEG) when used as paper coatings. The coated samples were characterized for the structural (by scanning electron microscopy, SEM), diffusive (water vapor and grease barrier properties), and surface properties (affinity for water and oil, by contact angle measurements). Samples of polyethylene-coated and fluorinated paper were used as commercial reference. WVTR of coated samples generally decreased and PHBV and PCL coatings with PEG at 20% showed interesting low wettability, as inferred from the water contact angles. Samples coated with PCL also showed increased grease resistance in comparison with plain paper. This work, within the limits of its lab-scale, offers interesting insights for future research lines toward the development of cellulose-based food contact materials that are fully recyclable and compostable

    Polycaprolactone/Starch/Agar Coatings for Food-Packaging Paper: Statistical Correlation of the Formulations’ Effect on Diffusion, Grease Resistance, and Mechanical Properties

    Get PDF
    Paper is one of the most promising materials for food packaging and wrapping due to its low environmental impact, but surface treatments are often needed to improve its performance, e.g., the resistance to fats and oils. In this context, this research is focused on the formulation of a new paper bio-coating. Paper was coated with liquids containing poly(hexano-6-lactone) (PCL), glycerol and variable percentages of starch (5–10% w/w PCL dry weight), agar-agar (0–1.5% w/w PCL dry weight), and polyethylene glycol (PEG) (5% or 15% w/w PCL dry weight) to improve coating uniformity and diffusion. A design of experiments approach was implemented to find statistically reliable results in terms of the best coating formulation. Coated paper was characterized through mechanical and physical properties. Results showed that agar content (1.5% w/w PCL dry weight) has a beneficial effect on increasing the resistance to oil. Furthermore, the best coating composition has been calculated, and it is 10% w/w PCL dry weight of starch, 1.5% w/w PCL dry weight of agar, and 15% w/w PCL dry weight of PEG

    Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications

    Get PDF
    The main aim of this study was to characterize microstructural, physical, optical, mechanical, water barrier and antimicrobial properties of chitosan-polyvinyl alcohol blend films (CS-PVA) enriched with ethyl lauroyl arginate (LAE) (1–10% w/v) for food packaging applications. The film microstructure was determined by scanning electron microscopy. Active films containing 10% LAE showed cracks on the surface with irregular shape in the cross-section indicating a weaker cohesion of the CS-PVA polymer blend at high LAE concentrations. The possible interaction of CS-PVA blend film with incorporated LAE was also investigated using Fourier-transform infrared (FT-IR) spectroscopy in the attenuated total reflection (ATR) mode. FT-IR/ATR spectra showed a low molecular interaction between the CS-PVA and LAE up to 2.5% while for films containing 5 and 10% LAE such interactions between the functional groups of the CS-PVA matrix and LAE have been detected. The active films were transparent and showed barrier properties against UV and visible light. The incorporation of LAE into the CS-PVA increased the thickness, water solubility, water vapor permeability, and the b* and ΔE* values, while it decreased mechanical properties and transparency (p < 0.05). Active films inhibited the growth of four major food bacterial pathogens including Campylobacter jejuni, Escherichia coli, Listeria monocytogenes and Salmonella typhimurium. Particularly, films containing 5 and 10% LAE were the most effective (p < 0.05). Overall, the characterization of functional properties revealed that CS-PVA blend film incorporated with LAE could be used as an environmentally friendly antimicrobial packaging material to extend the shelf life of food products

    Growth and Welfare of Rainbow Trout (Oncorhynchus mykiss) in Response to Graded Levels of Insect and Poultry By-Product Meals in Fishmeal-Free Diets

    Get PDF
    This study compared the nutrient-energy retention, digestive function, growth performance, and welfare of rainbow trout (ibw 54 g) fed isoproteic (42%), isolipidic (24%), fishmeal-free diets (CV) over 13 weeks. The diets consisted of plant-protein replacement with graded levels (10, 30, 60%) of protein from poultry by-product (PBM) and black soldier fly H. illucens pupae (BSFM) meals, either singly or in combination. A fishmeal-based diet was also tested (CF). Nitrogen retention improved with moderate or high levels of dietary PBM and BSFM relative to CV (p < 0.05). Gut brush border enzyme activity was poorly affected by the diets. Gastric chitinase was up-regulated after high BSFM feeding (p < 0.05). The gut peptide and amino acid transport genes were differently regulated by protein source and level. Serum cortisol was unaffected, and the changes in metabolites stayed within the physiological range. High PBM and high BSFM lowered the leukocyte respiratory burst activity and increased the lysozyme activity compared to CV (p < 0.05). The BSFM and PBM both significantly changed the relative percentage of lymphocytes and monocytes (p < 0.05). In conclusion, moderate to high PBM and BSFM inclusions in fishmeal-free diets, either singly or in combination, improved gut function and nutrient retention, resulting in better growth performance and the good welfare of the rainbow trout

    Residual peripheral blood CD26+leukemic stem cells in chronic myeloid leukemia patients during TKI therapy and during treatment-free remission

    Get PDF
    Chronic myeloid leukemia (CML) patients in sustained “deep molecular response” may stop TKI treatment without disease recurrence; however, half of them lose molecular response shortly after TKI withdrawing. Well-defined eligibility criteria to predict a safe discontinuation up-front are still missing. Relapse is probably due to residual quiescent TKI-resistant leukemic stem cells (LSCs) supposedly transcriptionally low/silent and not easily detectable by BCR-ABL1 qRT-PCR. Bone marrow Ph+ CML CD34+/CD38− LSCs were found to specifically co-express CD26 (dipeptidylpeptidase-IV). We explored feasibility of detecting and quantifying CD26+ LSCs by flow cytometry in peripheral blood (PB). Over 400 CML patients (at diagnosis and during/after therapy) entered this cross-sectional study in which CD26 expression was evaluated by a standardized multiparametric flow cytometry analysis on PB CD45+/CD34+/CD38− stem cell population. All 120 CP-CML patients at diagnosis showed measurable PB CD26+ LSCs (median 19.20/μL, range 0.27–698.6). PB CD26+ LSCs were also detectable in 169/236 (71.6%) CP-CML patients in first-line TKI treatment (median 0.014 cells/μL; range 0.0012–0.66) and in 74/112 (66%), additional patients studied on treatment-free remission (TFR) (median 0.015/μL; range 0.006–0.76). Notably, no correlation between BCR-ABL/ABLIS ratio and number of residual LSCs was found both in patients on or off TKIs. This is the first evidence that “circulating” CML LSCs persist in the majority of CML patients in molecular response while on TKI treatment and even after TKI discontinuation. Prospective studies evaluating the dynamics of PB CD26+ LSCs during TKI treatment and the role of a “stem cell response” threshold to achieve and maintain TFR are ongoing
    corecore