26 research outputs found

    Mitochondrial processing peptidases

    Get PDF
    AbstractThree peptidases are responsible for the proteolytic processing of both nuclearly and mitochondrially encoded precursor polypeptides targeted to the various subcompartments of the mitochondria. Mitochondrial processing peptidase (MPP) cleaves the vast majority of mitochondrial proteins, while inner membrane peptidase (IMP) and mitochondrial intermediate peptidase (MIP) process specific subsets of precursor polypeptides. All three enzymes are structurally and functionally conserved across species, and their human homologues begin to be recognized as potential players in mitochondrial disease

    Two-step Processing of Human Frataxin by Mitochondrial Processing Peptidase

    Get PDF
    We showed previously that maturation of the human frataxin precursor (p-fxn) involves two cleavages by the mitochondrial processing peptidase (MPP). This observation was not confirmed by another group, however, who reported only one cleavage. Here, we demonstrate conclusively that MPP cleaves p-fxn in two sequential steps, yielding a 18,826-Da intermediate (i-fxn) and a 17,255-Da mature (m-fxn) form, the latter corresponding to endogenous frataxin in human tissues. The two cleavages occur between residues 41–42 and 55–56, and both match the MPP consensus sequence RX ↓ (X/S). Recombinant rat and yeast MPP catalyze the pài step 4 and 40 times faster, respectively, than the i à m step. In isolated rat mitochondria, p-fxn undergoes a sequence of cleavages, p à i à m à d1 à d2, with d1 and d2 representing two C-terminal fragments of m-fxn produced by an unknown protease. The iàm step is limiting, and the overall rate of p à i à m does not exceed the rate of mà d1 à d2, such that the levels of m-fxn do not change during incubations as long as 3 h. Inhibition of the iàm step by a disease-causing frataxin mutation (W173G) leads to nonspecific degradation of i-fxn. Thus, the second of the two processing steps catalyzed by MPP limits the levels of mature frataxin within mitochondria

    Yeast and Human Frataxin Are Processed to Mature Form in Two Sequential Steps by the Mitochondrial Processing Peptidase

    Get PDF
    Frataxin is a nuclear-encoded mitochondrial protein which is deficient in Friedreich’s ataxia, a hereditary neurodegenerative disease. Yeast mutants lacking the yeast frataxin homologue (Yfh1p) show iron accumulation in mitochondria and increased sensitivity to oxidative stress, suggesting that frataxin plays a critical role in mitochondrial iron homeostasis and free radical toxicity. Both Yfh1p and frataxin are synthesized as larger precursor molecules that, upon import into mitochondria, are subject to two proteolytic cleavages, yielding an intermediate and a mature size form. A recent study found that recombinant rat mitochondrial processing peptidase (MPP) cleaves the mouse frataxin precursor to the intermediate but not the mature form (Koutnikova, H., Campuzano, V., and Koenig, M. (1998) Hum. Mol. Gen. 7, 1485–1489), suggesting that a different peptidase might be required for production of mature size frataxin. However, in the present study we show that MPP is solely responsible for maturation of yeast and human frataxin. MPP first cleaves the precursor to intermediate form and subsequently converts the intermediate to mature size protein. In this way, MPP could influence frataxin function and indirectly affect mitochondrial iron homeostasis

    Yeast and Human Frataxin Are Processed to Mature Form in Two Sequential Steps by the Mitochondrial Processing Peptidase

    Get PDF
    Frataxin is a nuclear-encoded mitochondrial protein which is deficient in Friedreich’s ataxia, a hereditary neurodegenerative disease. Yeast mutants lacking the yeast frataxin homologue (Yfh1p) show iron accumulation in mitochondria and increased sensitivity to oxidative stress, suggesting that frataxin plays a critical role in mitochondrial iron homeostasis and free radical toxicity. Both Yfh1p and frataxin are synthesized as larger precursor molecules that, upon import into mitochondria, are subject to two proteolytic cleavages, yielding an intermediate and a mature size form. A recent study found that recombinant rat mitochondrial processing peptidase (MPP) cleaves the mouse frataxin precursor to the intermediate but not the mature form (Koutnikova, H., Campuzano, V., and Koenig, M. (1998) Hum. Mol. Gen. 7, 1485–1489), suggesting that a different peptidase might be required for production of mature size frataxin. However, in the present study we show that MPP is solely responsible for maturation of yeast and human frataxin. MPP first cleaves the precursor to intermediate form and subsequently converts the intermediate to mature size protein. In this way, MPP could influence frataxin function and indirectly affect mitochondrial iron homeostasis

    Viral haemorrhagic disease: RHDV type 2 ten years later

    Full text link
    [EN] Until the early 1980s, it was totally unknown that lagomorphs were the hosts of several caliciviruses, which were included in the genus Lagovirus by the International Committee on Taxonomy of Viruses (ICTV) in 2000. In those years, two new diseases appeared, with very similar clinical and pathological profiles and associated high mortality rates: rabbit haemorrhagic disease (RHD) in rabbits and European Brown Hare Syndrome (EBHS) in European brown hares. It took a few years to ascertain that both diseases, actually acute and fatal forms of hepatitis, were caused by two genetically related caliciviruses, but they were finally classified by ICTV into two distinct viral species on the basis of their molecular characterisation and epidemiological data: RHDV in rabbit and EBHSV in brown hare. RHD has had a devastating effect on rabbit farms, causing great economic damage, especially in China, where RHD was first noticed around 1982, and in Europe. RHD has also severely affected wild rabbit populations, whose drastic decline has caused serious ecological imbalances in territories such as Spain, where rabbits are a central link in the wildlife food chain. Since the early 1990s, with the increased availability on the market of RHDV vaccines effective in protecting rabbits from RHD, the impact of the disease on rabbit farms has been significantly reduced. In the following years, also considering that RHDV is an endemic virus that cannot be eradicated, farmers learned how to manage the continuous use of RHDV vaccine in relation to the epidemiological situation, the type of breeding farm and the costs of vaccination prophylaxis. Although precarious, management of the RHD risk for rabbit farmers reached an acceptable equilibrium, which was, however, completely upset starting from 2010 by the emergence of another lagovirus also causing RHD. The genome of the newly emerged virus shows limited differences from that of RHDV, but the phenotypic traits of the two viruses are distinctive in at least three main respects: 1) The antigenic profile of the virus (the face of the virus recognised by the antibodies) is largely different from that of RHDV. 2) Newborn rabbits only a couple of weeks old die of RHD when infected with the new virus, while RHDV infections run asymptomatic until 7-8 wk of age. 3) The new virus, which started in Europe, has spread over the years to several continents, affecting wild and/or domestic rabbit populations. During this worldwide distribution, the new virus infected several lagomorph species and was shown to cause RHD in most of them. Considering these marked differences and the fact that the new virus is not a variant of RHDV, we proposed the name RHDV type 2 (RHDV2). All these main distinctive traits that differentiate RHDV from RHDV2 have the following consequences in practice: 1) The antigenic difference between RHDV and RHDV2 (their faces ) is so great that we need new specific vaccines to control RHDV2 (i.e. RHDV2 is a new serotype). 2) In the event of an RHDV2 infection in suckling rabbits, the presence of maternal antibodies to RHDV2 in the blood is the only way to prevent RHD. In contrast, newborns are naturally resistant to RHD if infected with RHDV and therefore, in terms of protection, the presence of maternal antibodies is useless. 3) When RHD outbreaks occur in territories where rabbits live in sympatry with populations of other lagomorphs, viral contamination in the environment reaches sufficiently high levels to facilitate the transmission of RHDV2 to other lagomorphs, including those with a lower susceptibility to infection than the rabbit. Taken together, these phenotypic traits characteristic of RHDV2 are the reason for its rapid spread across the territory and the concomitant disappearance of RHDV. Probably the most striking example of the epidemiological consequences related to the peculiar features of RHDV2 is its rapid spread in the USA and Mexico, where it is now practically endemic. There, despite repeated isolated outbreaks of RHD caused by RHDV from 2000 onwards in small rabbit farms, RHDV has never been able to become endemic.Capucci, L.; Cavadini, P.; Lavazza, A. (2022). Viral haemorrhagic disease: RHDV type 2 ten years later. World Rabbit Science. 30(1):1-11. https://doi.org/10.4995/wrs.2022.1650511130

    Recombination between non-structural and structural genes as a mechanism of selection in lagoviruses: The evolutionary dead-end of an RHDV2 isolated from European hare

    No full text
    The genus Lagovirus, belonging to the family Caliciviridae, emerged around the 1980s. It includes highly pathogenic species, rabbit hemorrhagic disease virus (RHDV/GI.1) and European brown hare syndrome virus (EBHSV/GII.1), which cause fatal hepatitis, and nonpathogenic viruses with enteric tropism, rabbit calicivirus (RCV/GI.3,4) and hare calicivirus (HaCV/GII.2). Lagoviruses have evolved along two independent genetic lineages: GI (RHDV and RCV) in rabbits and GII (EBHSV and HaCV) in hares. To be emphasized is that genomes of lagoviruses, like other caliciviruses, are highly conserved at RdRp-VP60 junctions, favoring intergenotypic recombination events at this point. The recombination between an RCV (genotype GI.3), donor of non-structural (NS) genes, and an unknown virus, donor of structural (S) genes, likely led to the emergence of a new lagovirus in the European rabbit, called RHDV type 2 (GI.2), identified in Europe in 2010. New RHDV2 intergenotypic recombinants isolated in rabbits in Europe and Australia originated from similar events between RHDV2 (GI.2) and RHDV (GI.1) or RCV (GI.3,4). RHDV2 (GI.2) rapidly spread worldwide, replacing RHDV and showing several lagomorph species as secondary hosts. The recombination events in RHDV2 viruses have led to a number of viruses with very different combinations of NS and S genes. Recombinant RHDV2 with NS genes from hare lineage (GII) was recently identified in the European hare. This study investigated the first RHDV2 (GI.2) identified in Italy in European hare (RHDV2_Bg12), demonstrating that it was a new virus that originated from the recombination between RHDV2, as an S-gene donor and a hare lagovirus, not yet identified but presumably nonpathogenic, as an NS gene donor. When rabbits were inoculated with RHDV2_Bg12, neither deaths nor seroconversions were recorded, demonstrating that RHDV2_Bg12 cannot infect the rabbit. Furthermore, despite intensive and continuous field surveillance, RHDV2_Bg12 has never again been identified in either hares or rabbits in Italy or elsewhere. This result showed that the host specificity of lagoviruses can depend not only on S genes, as expected until today, but potentially also on some species-specific NS gene sequences. Therefore, because RHDV2 (GI.2) infects several lagomorphs, which in turn probably harbor several specific nonpathogenic lagoviruses, the possibility of new speciation, especially in those other than rabbits, is real. RHDV2 Bg_12 demonstrated this, although the attempt apparently failed

    Pantothenate kinase-2 (Pank2) silencing causes cell growth reduction, cell-specific ferroportin upregulation and iron deregulation

    No full text
    Pantothenate kinase 2 (Pank2) is a mitochondrial enzyme that catalyses the first regulatory step of Coenzyme A synthesis and that is responsible for a genetic movement disorder named Pank-associated neurodegeneration (PKAN). This is characterized by abnormal iron accumulation in the brain, particularly in the globus pallidus. We downregulated Pank2 in some cell lines by using specific siRNAs to study its effect on iron homeostasis. In HeLa cells this caused a reduction of cell proliferation and of aconitase activity, signs of cytosolic iron deficiency without mitochondrial iron deposition, and a 12-fold induction of ferroportin mRNA. Pank2 silencing caused a strong induction of ferroportin mRNA also in hepatoma HepG2, a modest one in neuroblastoma SH-SY5Y and none in glioma U373 cells. A reduction of cell growth was observed in all these cell types. The strong Pank2-mediated alteration of ferroportin expression in some cell types might alter iron transfer to the brain and be connected with brain iron accumulation

    The effects of frataxin silencing in HeLa cells are rescued by the expression of human mitochondrial ferritin

    No full text
    Frataxin is a ubiquitous mitochondrial iron-binding protein involved in the biosynthesis of Fe/S clusters and heme. Its deficiency causes Friedreich's ataxia, a severe neurodegenerative disease. Mitochondrial ferritin is another major iron-binding protein, abundant in the testis and in sideroblasts from patients with sideroblastic anemia. We previously showed that its expression rescued the defects caused by frataxin deficiency in the yeast. To verify if this occurs also in mammals, we silenced frataxin in HeLa cells. This caused a reduction of growth, inhibition of the activity of aconitase and superoxide dismutase-2 and reduction of cytosolic ferritins without alteration of mitochondrial iron content. None of these effects were evident when silencing was done in cells expressing mitochondrial ferritin. These data indicate that frataxin has some roles in controlling the balance between different mitochondrial iron pools that are partially in common with those of mitochondrial ferritin
    corecore