69 research outputs found

    Solubility of Quercetin in Wines

    Get PDF
    Quercetin solubility at 18 °C and 0 °C was determined in an hydroalcoholic buffer solution with pH 3.20 and in four Italian wines to study the formation of quercetin precipitate mechanism in wines. The wines selected were Barbera 2018 for the typically high content in bisulfite bleachable pigments, red Cirò 2014, for its typically high content of flavonoids, Sangiovese 2014, for the presence of quercetin deposits in bottle, and white Cirò 2018, for the absence of red pigments. All the samples were spiked with 30 mg/L quercetin. The amount of quercetin solubilized at 18 °C and 0 °C in the hydroalcoholic buffer was much lower than in wines, while that solubilised in Barbera was much higher compared to red Cirò, Sangiovese and white Cirò. Solubilised quercetin was lower in all wine samples stored at 0 °C than in those at 18 °C. The pigment composition of the three red wines examined suggested that the over-solubility of quercetin could be due to the formation of soluble co-pigmentation complexes between quercetin and monomer anthocyanins and/or bisulphate-bleachable flavanol-anthocyanin pigments. A positive correlation between quercetin solubility and bleachable pigment was noted: the richer the wine in bleachable pigments, the higher the solubility of quercetin. Quercetin haze formation appeared due to the release of quercetin from co-pigmentation complexes during wine maturation and storage ,as its counterpart, anthocyanins, form non-bleachable pigments or are degraded in hydrolytic or oxidation reactions. Quercetin in aged red wines seemed to reach a content similar to that of white wine spiked with quercetin. Nevertheless, the quercetin content of aged red wines in which a quercetin haze has been found could be lower than that when added white wine, due to its degradation probably being induced by oxidation reactions. Finally, the solubilized quercetin content in white Cirò, which was higher than the hydroalcoholic buffer solution, suggested that there may be different substances in wines than pigments that prevent the growth of quercetin crystals. However, their nature was not determined in this study

    Solubility of Quercetin in Wines

    Get PDF
    Quercetin solubility at 18°C and 0°C was determined in a hydroalcoholic buffer solution with a pH of 3.20 and in four Italian wines to study the formation mechanism of quercetin precipitate in wines. The wines selected were Barbera 2018, for its typically high content of bisulphite bleachable pigments, red Cirò 2014, for its typically high content of flavonoids, Sangiovese 2014, for the presence of quercetin deposits in the bottle, and white Cirò 2018, for the absence of red pigments. All the samples were spiked with 30 mg/L quercetin. The amount of quercetin solubilised at 18°C and 0°C in the hydroalcoholic buffer was much lower than in the wines, while that solubilised in Barbera was much higher compared to red Cirò, Sangiovese and white Cirò. Solubilised quercetin was lower in all wine samples stored at 0°C than in those stored at 18°C. The pigment composition of the three red wines examined suggests that the over-solubility of quercetin could be due to the formation of soluble co-pigmentation complexes between quercetin and monomer anthocyanins and/or bisulphate-bleachable flavanol-anthocyanin pigments. A positive correlation between quercetin solubility and bleachable pigment was noted: the richer the wine in bleachable pigments, the higher the solubility of quercetin. Quercetin haze formation appeared due to the release of quercetin from co-pigmentation complexes during wine maturation and storage, as its counterpart, anthocyanins, form non-bleachable pigments or are degraded in hydrolytic or oxidation reactions. Quercetin in aged red wines seems to reach a content similar to that of white wine spiked with quercetin. Nevertheless, the quercetin content of aged red wines in which a quercetin haze has been found could be lower than that when added to white wine, due to its degradation probably being induced by oxidation reactions. Finally, the solubilised quercetin content in white Cirò, which was higher than the hydroalcoholic buffer solution, suggests that there may be different substances in wines than pigments that prevent the growth of quercetin crystals. However, their nature was not determined in this study

    Effect of leaf removal and ripening stage on the content of quercetin glycosides in Sangiovese grapes

    Get PDF
    Quercetin haze has been observed over the last few years in some aged Sangiovese wines. This problem could be due to an excess of the quercetin in the wine. Leaf removal increases the exposition of clusters to sunlight, which may enhance flavonol synthesis in the grapes. In this study, we evaluated the dynamics related to extractable flavonols in grapes grown in three usually defoliated Vitis vinifera (L.) cv. Sangiovese vineyards, whose wines showed quercetin precipitates. The particular structure of the vineyards in which the leaf removal experiments were carried out allowed the influence of vineyard, biotype and rootstock on grape flavonol contents at mid-maturation and technological maturity to be evaluated. The leaves were removed at pre-flowering (early) and at veraison (late). Leaf removal increased the content of extractable glycosidic flavonols in grapes at the two tested ripening stages. In addition, vineyard, biotype and rootstock affected the content of glycosidic flavonols and the interaction between the studied variables was significant. Even though leaf removal induced an increase in extractable quercetin glycosides which can increase the risk of quercetin haze in wine, an examination of the scientific literature on this topic showed that this risk does not depend on the absolute content of these compounds alone

    Modifications in Chemical, Physical and Mechanical Properties of Nebbiolo (Vitis vinifera L.) Grape Berries Induced by Mixed Virus Infection

    Get PDF
    Modifications in grape quality parameters induced by mixed infection with GFLV and GFkV, GLRaV-1 and GVA, and GLRaV-3 and GVA in three Nebbiolo clones were compared against healthy plants of the same clones in two experimental vineyards in Piemonte, northwest Italy. The aim of the study was to evaluate the effect of virus infection on the mechanical properties of the berry skin and the whole berry as assessed by texture analysis tests, and on the amount and quality of berry skin phenols. Differences were observed in grapevine vigour, yield and juice composition, depending on the viral status of the plants. The anthocyanin profile of the vines infected with GFV and GFkV and those infected with GLRaV-1 and GVA showed a lower percentage of the more stable tri-substituted malvidin-3-glucoside and a higher percentage of cyanidin and peonidin-3-glucosides. Texture analysis showed that the viruses may increase berry-skin thickness and reduce phenol extractability. These effects carry practical implications for wine quality

    TP53 and p16INK4A, but not H-KI-Ras, are involved in tumorigenesis and progression of pleomorphic adenomas.

    Get PDF
    The putative role of TP53 and p16INK4A tumor suppressor genes and Ras oncogenes in the development and progression of salivary gland neoplasias was studied in 28 cases of pleomorphic adenomas (PA), 4 cases of cystic adenocarcinomas, and 1 case of carcinoma ex-PA. Genetic and epigenetic alterations in the above genes were analyzed by Polymerase Chain Reaction/Single Strand Conformational Polymorphism (PCR/SSCP) and sequencing and by Methylation Specific-PCR (MS-PCR). Mutations in TP53 were found in 14% (4/28) of PAs and in 60% (3/5) of carcinomas. Mutations in H-Ras and K-Ras were identified in4%(1/28) and7% (2/28) of PAs, respectively. Only 20% (1/5) of carcinomas screened displayed mutations in K-Ras. p16INK4A promoter hypermethylation was found in 14% (4/28) of PAs and 100% (5/5) carcinomas. All genetic and epigenetic alterations were detected exclusively in the epithelial and transitional tumor components, and were absent in the mesenchymal parts. Our analysis suggests that TP53 mutations and p16INK4A promoter methylation, but not alterations in the H-Ras and K-Ras genes, might be involved in the malignant progression of PA into carcinoma. J. Cell. Physiol. 207: 654–659, 2006. 2006 Wiley-Liss, Inc

    Expression of the Antimicrobial Peptide Piscidin 1 and Neuropeptides in Fish Gill and Skin: A Potential Participation in Neuro-Immune Interaction

    Get PDF
    Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.Expression of the Antimicrobial Peptide Piscidin 1 and Neuropeptides in Fish Gill and Skin: A Potential Participation in Neuro-Immune InteractionpublishedVersio

    Localization of Acetylcholine, Alpha 7-NAChR and the Antimicrobial Peptide Piscidin 1 in the Macrophages of Fish Gut: Evidence for a Cholinergic System, Diverse Macrophage Populations and Polarization of Immune Responses

    Get PDF
    20 pages, 9 figures, 2 tables.-- Data Availability Statement: Not applicableThe recognition and elimination of invading pathogens are vital for host survival. Macrophages play a central role in host protection and cells functionally reminiscent of vertebrate macrophages are present in all multicellular organisms. A pattern responsible for bacterial recognition found on the surface of macrophages is CD14. These cells possess a repertoire of antimicrobial molecules stored in their granules and lysosomes. Polarization states observed in mammalian macrophages termed M1 and M2 also likely exist in fish macrophages. Markers for macrophage subtypes are slowly but definitively emerging in fish species. In the present study cell markers such as CD14, acetylcholine, alpha 7 acetylcholine nicotinic receptor (nAChR) subtype, the inducible nitric oxidase synthase (iNOS), and the antimicrobial peptide piscidin 1 are reported for the first time in the intestinal macrophages of both catfish Heteropneustes fossilis (Bloch, 1794) and the African bonytongue Heterotis niloticus (Cuvier, 1829) along the anterior and the posterior axis and the concentric muscle layers. Many antimicrobial effector responses of vertebrate macrophages including respiratory burst and NO induction are similar across the diverse animal taxa. Antibodies against calbindin coupled with ones to VAChT and tubulin revealed the localization of myenteric and submucosal plexuses, which are made up of enteric neurons, glial cells, and nerves near macrophages. Current studies allow for the elucidation of multiple roles of macrophages in disease models providing an insight into their in vivo function in fishPeer reviewe

    Antifungal susceptibility of invasive yeast isolates in Italy: the GISIA3 study in critically ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yeasts are a common cause of invasive fungal infections in critically ill patients. Antifungal susceptibility testing results of clinically significant fungal strains are of interest to physicians, enabling them to adopt appropriate strategies for empiric and prophylactic therapies. We investigated the antifungal susceptibility of yeasts isolated over a 2-year period from hospitalised patients with invasive yeast infections.</p> <p>Methods</p> <p>638 yeasts were isolated from the blood, central venous catheters and sterile fluids of 578 patients on general and surgical intensive care units and surgical wards. Etest strips and Sensititre panels were used to test the susceptibility of the isolates to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole, posaconazole and voriconazole in 13 laboratories centres (LC) and two co-ordinating centres (CC). The Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution method was used at the CCs for comparison.</p> <p>Results</p> <p>Etest and Sensititre (LC/CC) MIC<sub>90 </sub>values were, respectively: amphotericin B 0.5/0.38, 1/1 mg/L; anidulafungin 2/1.5 and 1/1 mg/L; caspofungin 1/0.75 and 0.5/0.5 mg/L; fluconazole 12/8 and 16/16 mg/L; itraconazole 1/1.5, 0.5/0.5 mg/L; posaconazole 0.5 mg/L and voriconazole 0.25 mg/L for all. The overall MIC<sub>90 </sub>values were influenced by the reduced susceptibility of <it>Candida parapsilosis </it>isolates to echinocandins and a reduced or lack of susceptibility of <it>Candida glabrata </it>and <it>Candida krusei </it>to azoles, in particular fluconazole and itraconazole. Comparison of the LC and CC results showed good Essential Agreement (90.3% for Etest and 92.9% for Sensititre), and even higher Categorical Agreement (93.9% for Etest and 96% for Sensititre); differences were observed according to the species, method, and antifungal drug. No cross-resistance between echinocandins and triazoles was detected.</p> <p>Conclusions</p> <p>Our data confirm the different antifungal susceptibility patterns among species, and highlight the need to perform antifungal susceptibility testing of clinically relevant yeasts. With the exception of a few species (e.g. <it>C. glabrata </it>for azoles and <it>C. parapsilosis </it>for echinocandins), the findings of our study suggest that two of the most widely used commercial methods (Etest and Sensititre) provide valid and reproducible results.</p

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF
    • …
    corecore