242 research outputs found

    Symmetries, Currents and Conservation Laws of Self-Dual Gravity

    Get PDF
    We describe an infinite-dimensional algebra of hidden symmetries for the self-dual gravity equations. Besides the known diffeomorphism-type symmetries (affine extension of w(infinity) algebra), this algebra contains new hidden symmetries, which are an affine extension of the Lorentz rotations. The full symmetry algebra has both Kac-Moody and Virasoro-like generators, whose exponentiation maps solutions of the field equations to other solutions. Relations to problems of string theories are briefly discussed.Comment: 14 pages, LaTeX, the paper was reformatte

    Shallow Silicon Vacancy Centers with lifetime-limited optical linewidths in Diamond Nanostructures

    Full text link
    The negatively charged silicon vacancy center (SiV^-) in diamond is a promising, yet underexplored candidate for single-spin quantum sensing at sub-kelvin temperatures and tesla-range magnetic fields. A key ingredient for such applications is the ability to perform all-optical, coherent addressing of the electronic spin of near-surface SiV^- centers. We present a robust and scalable approach for creating individual, \sim50nm deep SiV^- with lifetime-limited optical linewidths in diamond nanopillars through an easy-to-realize and persistent optical charge-stabilization scheme. The latter is based on single, prolonged 445nm laser illumination that enables continuous photoluminescence excitation spectroscopy, without the need for any further charge stabilization or repumping. Our results constitute a key step towards the use of near-surface, optically coherent SiV^- for sensing under extreme conditions, and offer a powerful approach for stabilizing the charge-environment of diamond color centers for quantum technology applications.Comment: 15 pages, 13 figures including supplementary informatio

    Vaccine safety issues at the turn of the 21st century

    Get PDF
    Global gains in vaccination coverage during the early 21st century have been threatened by the emergence of antivaccination groups that have questioned the effectiveness of vaccines to generate public distrust of vaccines and immunisation programmes. This manuscript summarises six key topics that have been at the centre of global discussions on vaccine safety during the early 21st century: thiomersal in multi-dose non-live vaccines, aluminium adjuvants used with several non-live vaccines, autism and auto-immune conditions as possible consequences of vaccination, a risk of immune overload with increasing numbers of vaccinations, and detrimental non-specific effects (NSEs) of vaccination. For each topic, we describe the hypothesis behind the public concern, the evidence reviewed by the WHO's Global Advisory Committee for Vaccine Safety (GACVS) during 1999-2019, and any significant new data that has emerged since GACVS conclusions were made. Although the scientific evidence on these issues overwhelmingly supports the safety of vaccines, communication messages to caregivers and providers need to condense and convey scientific information in an appropriate way to address concerns contributing to vaccine distrust. In addition, there is need for further studies specifically designed to address both positive and negative NSE of vaccination. The role of GACVS will be increasingly important in evaluating the evidence and engaging the global community in promoting and assuring the safety of vaccines in the decades to come as we move into an era in which we use new vaccination platforms, antigens and formulations

    Plasma-deposited AgOx-doped TiOx coatings enable rapid antibacterial activity based on ROS generation

    Get PDF
    Abstract To enable a rapid-acting antibacterial mechanism without the release of biocidal substances, TiO2 catalysts have been considered based on the generation of reactive oxygen species (ROS). Doping with dissimilar metals generates electron-hole pairs with narrow band gaps promoting the production of ROS. Here, plasma technology is investigated to deposit Ag nano islets on defective TiOx films, stabilized by plasma postoxidation suppressing Ag ion release. Importantly, ROS generation is maintained upon storage in the dark yet with diminishing efficacy; however, it can be restored by exposure to visible light. The rapid-acting antibacterial properties are found to strongly correlate with ROS generation, which can even be maintained by functionalization with hydrophobic plasma polymer films. The cytocompatible coatings offer promising applications for implants and other medical devices

    A single dose multi-ingredient pre-workout supplement enhances upper body resistance exercise performance

    Get PDF
    IntroductionMulti-ingredient pre-workout supplements (MIPS) are commonly used by individuals looking to enhance exercise performance and augment adaptations to training. However, the efficacy of commercially available MIPS is largely dependent on the ingredient profile, and new formulations should be investigated to determine their effectiveness. Therefore, the purpose of this study was to examine the effects of a commercially available MIPS product on performance during an upper body resistance exercise protocol.MethodsTwenty resistance-trained participants (10 men, 10 women) volunteered to complete this double-blind, placebo-controlled, crossover study consisting of 3 visits. Visit 1 consisted of body composition, 1-repetition maximum (1RM) testing, and familiarization. Visits 2 and 3 consisted of supplementation with either MIPS or placebo (PLA) 1 h prior to completion of an upper body resistance exercise workout during which power output, repetitions completed, rating of perceived exertion (RPE), and perceived recovery were recorded. Assessments of reaction time, isometric mid-thigh pull, and perceived levels of focus, energy, fatigue, and “muscle pump” were also completed before supplementation, 1 h after supplementation, and immediately after exercise.ResultsStatistical analysis revealed significant main effects of trial for reaction time (p < 0.001) and bench press peak power (p = 0.026) indicating better performance during the MIPS trial. Furthermore, total number of repetitions completed significantly increased (p = 0.003) during the MIPS (96.90 ± 21.31 repetitions) trial compared to PLA (89.50 ± 18.37 repetitions). Additionally, overall session RPE was significantly lower (p = 0.002) during the MIPS (7.6 ± 1.2) trial compared to PLA (8.3 ± 0.9).DiscussionThese findings suggest that acute supplementation with this MIPS improved upper body resistance exercise performance while reducing participant RPE. Further research should investigate the efficacy of chronic supplementation with this MIPS as the acute response provided an ergogenic benefit

    Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens

    Get PDF
    We report on pulsed-laser-induced generation of nitrogen-vacancy (NV) centers in diamond facilitated by a solid-immersion lens (SIL). The SIL enables laser writing at energies as low as 5.8 nJ per pulse and allows vacancies to be formed close to a diamond surface without inducing surface graphitization. We operate in the previously unexplored regime, where lattice vacancies are created following tunneling breakdown rather than multiphoton ionization. We present three samples in which NV center arrays were laser-written at distances between similar to 1 and 40 mu m from a diamond surface, all presenting narrow distributions of optical linewidths with means between 62.1 and 74.5 MHz. The linewidths include the effect of long-term spectral diffusion induced by a 532 nm repump laser for charge-state stabilization, thereby emphasizing the particularly low-charge-noise environment of the created color centers. Such high-quality NV centers are excellent candidates for practical applications employing two-photon quantum interference with separate NV centers. Finally, we propose a model for disentangling power broadening from inhomogeneous broadening in the NV center optical linewidth

    1.4 nm gold nanoparticle-antibody conjugates for in situ gold immunolabelling after transduction into living human cells

    Get PDF
    Despite advances in Electron Microscopy (EM) that enable to image protein assemblies within vitreous sections of cells at nearly atomic resolution, labelling is still necessary to locate small proteins or rare complexes. Gold immunolabelling has been used for decades to localise specific proteins within cellular sections. However, current gold particle-antibody conjugates are not built with enough chemical precision to match the current resolution offered by cryo-EM methodology. Furthermore, as a close to native specimen state can only be achieved by strict preservation of a frozen hydrated state, it is required to deliver gold labelling agents into living cells prior to their vitrification. Several 1.4 nm gold nanoparticle-antibody conjugates were synthesised. Their abilities to bind to and label their corresponding epitopes within living cells after cytosolic delivery by electroporation are documented here

    A novel approach to model cumulative stress:Area under the s-factor curve

    Get PDF
    OBJECTIVE: Using a large longitudinal sample of adults from the Midlife in the United States (MIDUS) study, the present study extended a recently developed hierarchical model to determine how best to model the accumulation of stressors, and to determine whether the rate of change in stressors or traditional composite scores of stressors are stronger predictors of health outcomes.METHOD: We used factor analysis to estimate a stress-factor score and then, to operationalize the accumulation of stressors we examined five approaches to aggregating information about repeated exposures to multiple stressors. The predictive validity of these approaches was then assessed in relation to different health outcomes.RESULTS: The prediction of chronic conditions, body mass index, difficulty with activities of daily living, executive function, and episodic memory later in life was strongest when the accumulation of stressors was modeled using total area under the curve (AUC) of estimated factor scores, compared to composite scores that have traditionally been used in studies of cumulative stress, as well as linear rates of change.CONCLUSIONS: Like endogenous, biological markers of stress reactivity, AUC for individual trajectories of self-reported stressors shows promise as a data reduction technique to model the accumulation of stressors in longitudinal studies. Overall, our results indicate that considering different quantitative models is critical to understanding the sequelae and predictive power of psychosocial stressors from midlife to late adulthood.</p
    corecore