18 research outputs found

    Enhancer–gene maps in the human and zebrafish genomes using evolutionary linkage conservation

    No full text
    International audienceThe spatiotemporal expression of genes is controlled by enhancer sequences that bind transcription factors. Identifying the target genes of enhancers remains difficult because enhancers regulate gene expression over long genomic distances. To address this, we used an evolutionary approach to build two genome-wide maps of predicted enhancer-gene associations in the human and zebrafish genomes. Evolutionary conserved sequences were linked to their predicted target genes using PEGASUS, a bioinformatics method that relies on evolutionary conservation of synteny. The analysis of these maps revealed that the number of predicted enhancers linked to a gene correlate with its expression breadth. Comparison of both maps identified hundreds of putative vertebrate ancestral regulatory relationships from which we could determine that predicted enhancergene distances scale with genome size despite strong positional conservation. The two maps represent a resource for further studies, including the prioritization of sequence variants in whole genome sequence of patients affected by genetic diseases

    Cooperation, cis-interactions, versatility and evolutionary plasticity of multiple cis-acting elements underlie krox20 hindbrain regulation.

    No full text
    Cis-regulation plays an essential role in the control of gene expression, and is particularly complex and poorly understood for developmental genes, which are subject to multiple levels of modulation. In this study, we performed a global analysis of the cis-acting elements involved in the control of the zebrafish developmental gene krox20. krox20 encodes a transcription factor required for hindbrain segmentation and patterning, a morphogenetic process highly conserved during vertebrate evolution. Chromatin accessibility analysis reveals a cis-regulatory landscape that includes 6 elements participating in the control of initiation and autoregulatory aspects of krox20 hindbrain expression. Combining transgenic reporter analyses and CRISPR/Cas9-mediated mutagenesis, we assign precise functions to each of these 6 elements and provide a comprehensive view of krox20 cis-regulation. Three important features emerged. First, cooperation between multiple cis-elements plays a major role in the regulation. Cooperation can surprisingly combine synergy and redundancy, and is not restricted to transcriptional enhancer activity (for example, 4 distinct elements cooperate through different modes to maintain autoregulation). Second, several elements are unexpectedly versatile, which allows them to be involved in different aspects of control of gene expression. Third, comparative analysis of the elements and their activities in several vertebrate species reveals that this versatility is underlain by major plasticity across evolution, despite the high conservation of the gene expression pattern. These characteristics are likely to be of broad significance for developmental genes

    Krox20 hindbrain regulation incorporates multiple modes of cooperation between cis-acting elements

    No full text
    International audienceDevelopmental genes can harbour multiple transcriptional enhancers that act simultaneously or in succession to achieve robust and precise spatiotemporal expression. However, the mechanisms underlying cooperation between cis-acting elements are poorly documented, notably in vertebrates. The mouse gene Krox20 encodes a transcription factor required for the specification of two segments (rhombomeres) of the developing hindbrain. In rhombomere 3, Krox20 is subject to direct positive feedback governed by an autoregulatory enhancer, element A. In contrast, a second enhancer, element C, distant by 70 kb, is active from the initiation of transcription independent of the presence of the KROX20 protein. Here, using both enhancer knock-outs and investigations of chromatin organisation, we show that element C possesses a dual activity: besides its classical enhancer function, it is also permanently required in cis to potentiate the autoregulatory activity of element A, by increasing its chromatin accessibility. This work uncovers a novel, asymmetrical, long-range mode of cooperation between cis-acting elements that might be essential to avoid promiscuous activation of positive autoregulatory elements

    Evolution of enhancer A activity in vertebrates.

    No full text
    <p>The orthologues of element A from 6 vertebrate species, zebrafish (zA), koi carp (kA), spotted gar (sA), <i>Xenopus laevis</i> (xA), chicken (cA) and mouse (mA) were transferred into a GFP reporter construct and the corresponding plasmids were used to generate zebrafish transgenic lines, as indicated. <i>GFP</i> expression was analysed by in situ hybridization at 8s in embryos from each line, either in wild type (WT) or <i>krox20</i> null (<i>krox20*</i>) backgrounds, the latter being obtained by injection of Cas9 protein together with guide RNAs targeting the coding sequence of Krox20’s zinc fingers. Positions of r3 and r5 are shown. A phylogenetic tree with the indication of the node time distances from the present in millions of years (MYA) is shown underneath.</p

    Collaboration in <i>cis</i> between elements A and C for the control of autoregulation.

    No full text
    <p>Embryos carrying combinations of homozygous deletions of elements A (∆A), C (C*), D (D*), E (E*) and of heterozygous deletions of elements A (∆A/+) or C (∆C/+) were analysed for <i>krox20</i> expression by in situ hybridization at the indicated stages. The genotype (∆A/+ +/∆C) corresponds to heterozygous deletions of A and C affecting different chromosomes. Somatic deletions are indicated by the * symbol and positions of r3 and r5 are shown. Neural crest cells migrating from r5/r6 are indicated by an arrowhead.</p

    <i>krox20</i> expression and enhancer dynamics.

    No full text
    <p>(A) Analysis of <i>krox20</i> expression by in situ hybridization at the indicated somite stages (s) in wild type (<i>krox20</i><sup><i>+/+</i></sup>) or <i>krox20</i> null (<i>krox20</i><sup><i>fh227/fh227</i></sup>) backgrounds. (B) Analysis of <i>GFP</i> expression by in situ hybridization at the indicated stages in 6 transgenic lines carrying GFP reporter constructs in which the different putative <i>krox20</i> enhancers have been inserted. Positions of r3, r4 and r5 are shown. Neural crest cells migrating from r5/r6 are indicated by arrowheads.</p

    Schematic of the <i>cis</i>-regulation of <i>krox20</i> expression in r3 and r5, illustrating differences between zebrafish and mouse.

    No full text
    <p><i>Cis</i>-acting elements are indicated by light blue boxes along the locus, with their position with respect to the site of transcription initiation underneath. The different types of activities of the elements are represented by arrows originating from the element: enhancer activities involved in the initiation of <i>krox20</i> expression are indicated by green arrows pointing toward the promoter, enhancer activities corresponding to direct autoregulation are indicated by blue arrows pointing back to the element and the potentiator activity of element C is represented by red arrows pointing toward element A. Question marks indicate that the activity is suspected, but not confirmed.</p

    DNA accessibility and candidate enhancer sequences within and around the zebrafish <i>krox20</i> locus.

    No full text
    <p>UCSC genome browser view of the <i>krox20</i> locus showing gene positions (purple), repetitive sequences (black) and the sequences selected for enhancer activity tests (light blue), including those that showed activity (named A to F). Below are ATAC-seq data from experiments performed at the indicated stages, either on whole embryos (95% epiboly) or dissected hindbrain or posterior regions of the embryos (5s and 15s), as shown on the schematics on the right side. The seven mostly significant peaks located in non-coding sequences are highlighted in yellow. Underneath is a Vista browser view of sequence conservation between zebrafish and mouse (black) over the region.</p

    A model for <i>Krox20</i> regulation and the dual function of element C.

    No full text
    <p>(<b>A</b>) Schematic representation of the regulation of <i>Krox20</i> in r3. Three situations are envisaged in wild type embryos. Left: silent locus. If both element C and the new enhancer (NE) are inactive, no expression occurs. Middle: early expression phase. At this stage, elements C and NE have been bound by their respective transcription factors and have initiated the expression of <i>Krox20</i> via their classical enhancer functions. Nevertheless, element C has not yet been unlocked (decompacted) element A and/or the concentration of the KROX20 protein has not reached high enough levels to allow the establishment of a stable feedback loop with a significant probability. Right: late expression phase. Via its potentiator function, element C has unlocked element A, which can bind the KROX20 protein, which has now accumulated at a high enough concentration. Activation of enhancer A establishes the autoregulatory loop. <b>(B)</b> Three mutations that disrupt the positive feedback loop are presented at late expression phase. Left: mutation of the KROX20 protein preventing binding to element A. Middle: mutation of element A, preventing the binding of the KROX20 protein. Right: mutation of element C, preventing unlocking of element A.</p

    Physical interactions within the <i>Krox20</i> locus.

    No full text
    <p><b>(A)</b> Alignment of data in the <i>Krox20</i> and adjacent loci from Hi-C in ES cells [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006903#pgen.1006903.ref011" target="_blank">11</a>], 4C-seq in E9.5 whole mouse embryos, using the <i>Krox20</i> and <i>Nrbf2</i> promoters as viewpoints (this work, 2 biological replicates) and CTCF ChIP-seq in E14.5 mouse brain (ENCODE, [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006903#pgen.1006903.ref058" target="_blank">58</a>]). <b>(B)</b> Zoom in on the <i>Krox20</i> locus, showing 4C-seq data from the <i>Krox20</i> promoter, element A, element B and element C as viewpoints. CTCF ChIP-seq data in E14.5 mouse brain (ENCODE) are indicated below. Signals from simultaneously processed E9.5 whole embryo (dark blue) and E8.5 embryo head (light blue) samples are shown. On the right, normalized distributions of the 4C-seq signals in different genomic regions are indicated. TADs as defined in [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006903#pgen.1006903.ref007" target="_blank">7</a>] or by our additional analysis (<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006903#pgen.1006903.s002" target="_blank">S2 Fig</a>) are indicated above, with dashed lines in the graphs demarcating TAD boundaries. Genes (black/red), <i>cis</i>-regulatory elements (orange) and genomic coordinates are indicated below each set of data. Arrowheads above each 4C track pinpoint viewpoints.</p
    corecore