10 research outputs found

    Diverse values of nature for sustainability

    Get PDF
    Twenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures

    Horizon scanning for South African biodiversity : a need for social engagement as well as science

    Get PDF
    A horizon scan was conducted to identify emerging and intensifying issues for biodiversity conservation in South Africa over the next 5–10 years. South African biodiversity experts submitted 63 issues of which ten were identified as priorities using the Delphi method. These priority issues were then plotted along axes of social agreement and scientific certainty, to ascertain whether issues might be “simple” (amenable to solutions from science alone), “complicated” (socially agreed upon but technically complicated), “complex” (scientifically challenging and significant levels of social disagreement) or “chaotic” (high social disagreement and highly scientifically challenging). Only three of the issues were likely to be resolved by improved science alone, while the remainder require engagement with social, economic and political factors. Fortunately, none of the issues were considered chaotic. Nevertheless, strategic communication, education and engagement with the populace and policy makers were considered vital for addressing emerging issues.The South African National Biodiversity Institutehttp://link.springer.com/journal/13280hj2021Mammal Research Institut

    Systematic identification of genomic markers of drug sensitivity in cancer cells.

    Get PDF
    Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies

    Marine life of the sea trout

    No full text

    Functional In Vivo Imaging of Tumors.

    No full text
    Noninvasive imaging of functional and molecular changes in cancer has become an indispensable tool for studying cancer in vivo. Targeting the functional and molecular changes in cancer imaging provides a platform for the in vivo analysis of the mechanisms such as gene expression, signal transduction, biochemical reactions, regulatory pathways, cell trafficking, and drug action underlying cancer noninvasively. The main focus of imaging in cancer is the development of new contrast methods/molecular probes for the early diagnosis and the precise evaluation of therapy response. In clinical setup, imaging modalities facilitate screening, prediction, staging, biopsy and therapy guidance, therapy response, therapy planning, and prognosis of cancer. In this book chapter, we review different established and emerging in vivo imaging modalities and their applications in monitoring functional, molecular, and metabolic changes in cancer
    corecore