99 research outputs found
Online Versus In-person Mathematics Instruction: A Comparison of Two Instructional Models
Our paper explores the differences between online and traditional, in-person teaching and learning modalities, looking specifically at courses preparing teachers to be mathematics teacher leaders. In the context of current research on the teaching and learning of mathematics in an online setting, we share our own experiences. We describe the preparation for and teaching of online mathematics, focusing on establishing norms and the use of technology. The changing teaching and learning opportunities of the 21st century require discussion of these vital issues. We include stories of interactions between candidates and teachers and among groups of candidates in mathematics courses, detailing not just the discursive and work-sharing tools but the nature and nuance of these interactions and how they mediate mathematics learning. We share our online teaching and learning experiences, drawing on research to frame our impressions. By identifying key similarities and differences between instructional modalities and by reflecting critically on our own successes and challenges, we present a vision of online teaching and learning for mathematics courses, in particular those for mathematics specialists, that can be effective, inclusive, and relational
Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways
The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88− mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88− mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function
Physiological and Perceived Effects of Forearm or Head Cooling During Simulated Firefighting Activity and Rehabilitation.
CONTEXT: Cooling devices aim to protect firefighters by attenuating a rise in body temperature. Devices for head cooling (HC) while firefighting and forearm cooling (FC) during rehabilitation (RHB) intervals are commonly marketed, but research regarding their efficacy is limited.
OBJECTIVE: To investigate the physiological and perceived effects of HC and FC during firefighting drills and RHB.
DESIGN: Randomized controlled clinical trial.
SETTING: Firefighter training center.
PATIENTS OR OTHER PARTICIPANTS: Twenty-seven male career firefighters (age = 39 ± 7 years; height = 169 ± 7 cm; weight = 95.4 ± 16.8 kg).
INTERVENTION(S): Firefighters were randomly assigned to 1 condition: HC (n = 9), in which participants completed drills wearing a cold gel pack inside their helmet; FC (n = 8), in which participants sat on a collapsible chair with water-immersion arm troughs during RHB; or control (n = 10), in which participants used no cooling devices. Firefighters completed four 15-minute drills (D1-D4) wearing full bunker gear and breathing apparatus. Participants had a 15-min RHB after D2 (RHB1) and D4 (RHB2).
MAIN OUTCOME MEASURE(S): Change (Δ) in gastrointestinal temperature (T
RESULTS: The T
CONCLUSIONS: The HC did not attenuate rises in physiological or perceptual variables during firefighting drills. The FC effectively reduced
High-threshold and low-overhead fault-tolerant quantum memory
Quantum error correction becomes a practical possibility only if the physical
error rate is below a threshold value that depends on a particular quantum
code, syndrome measurement circuit, and a decoding algorithm. Here we present
an end-to-end quantum error correction protocol that implements fault-tolerant
memory based on a family of LDPC codes with a high encoding rate that achieves
an error threshold of for the standard circuit-based noise model. This
is on par with the surface code which has remained an uncontested leader in
terms of its high error threshold for nearly 20 years. The full syndrome
measurement cycle for a length- code in our family requires ancillary
qubits and a depth-7 circuit composed of nearest-neighbor CNOT gates. The
required qubit connectivity is a degree-6 graph that consists of two
edge-disjoint planar subgraphs. As a concrete example, we show that 12 logical
qubits can be preserved for ten million syndrome cycles using 288 physical
qubits in total, assuming the physical error rate of . We argue that
achieving the same level of error suppression on 12 logical qubits with the
surface code would require more than 4000 physical qubits. Our findings bring
demonstrations of a low-overhead fault-tolerant quantum memory within the reach
of near-term quantum processors
Enhanced monography in a collaboratively evolved hub for systematic biology
No abstract available
U.S. Billion-ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry
The Report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of “potential” biomass within the contiguous United States based on numerous assumptions about current and future inventory and production capacity, availability, and technology. In the 2005 BTS, a strategic analysis was undertaken to determine if U.S. agriculture and forest resources have the capability to potentially produce at least one billion dry tons of biomass annually, in a sustainable manner—enough to displace approximately 30% of the country’s present petroleum consumption. To ensure reasonable confidence in the study results, an effort was made to use relatively conservative assumptions. However, for both agriculture and forestry, the resource potential was not restricted by price. That is, all identified biomass was potentially available, even though some potential feedstock would more than likely be too expensive to actually be economically available.
In addition to updating the 2005 study, this report attempts to address a number of its shortcoming
Association between Rainfall and Pediatric Emergency Department Visits for Acute Gastrointestinal Illness
Screening for inter-hospital differences in cesarean section rates in low-risk deliveries using administrative data: An initiative to improve the quality of care
BACKGROUND: Rising national cesarean section rates (CSRs) and unexplained inter-hospital differences in CSRs, led national and international bodies to select CSR as a quality indicator. Using hospital discharge abstracts, we aimed to document in Belgium (1) inter-hospital differences in CSRs among low risk deliveries, (2) a national upward CSR trend, (3) lack of better neonatal outcomes in hospitals with high CSRs, and (4) possible under-use of CS. METHODS: We defined a population of low risk deliveries (singleton, vertex, full-term, live born, 2499 g). Using multivariable logistic regression techniques, we provided degrees of evidence regarding the observed departure ([relative risk-1]*100) of each hospital (N = 107) from the national CSR and its trend. To determine a benchmark, we defined three CSR groups (high, average and low) and compared them regarding 1 minute Apgar scores and other neonatal endpoints. An anonymous feedback is provided to the hospitals, the College of Physicians (with voluntary disclosure of the outlying hospitals for quality improvement purposes) and to the policy makers. RESULTS: Compared with available information, the completeness and accuracy of the data, regarding the variables selected to determine our study population, showed adequate. Important inter-hospital differences were found. Departures ranged from -65% up to +75%, and 9 "high CSR" and 13 "low CSR" outlying hospitals were identified. We observed a national increasing trend of 1.019 (95%CI [1.015; 1.022]) per semester, adjusted for age groups. In the "high CSR" group 1 minute Apgar scores <4 were over-represented in the subgroup of vaginal deliveries, suggesting CSs not carried out for medical reasons. Under-use of CS was also observed. Given their questionable completeness, except Apgar scores, our neonatal results, showing a significant association of CS with adverse neonatal endpoints, are to be cautiously interpreted. Taking the available evidence into account, the "Average CSR" group seemed to be the best benchmark candidate. CONCLUSION: Rather than firm statements about quality of care, our results are to be considered a useful screening. The inter-hospital differences in CSR, the national CS upward trend, the indications of over-use and under-use, the geographically different obstetric patterns and the admission day-related concentration of deliveries, whether or not by CS, may trigger initiatives aiming at improving quality of care
Cartography of Methicillin-Resistant S. aureus Transcripts: Detection, Orientation and Temporal Expression during Growth Phase and Stress Conditions
BACKGROUND: Staphylococcus aureus is a versatile bacterial opportunist responsible for a wide spectrum of infections. The severity of these infections is highly variable and depends on multiple parameters including the genome content of the bacterium as well as the condition of the infected host. Clinically and epidemiologically, S. aureus shows a particular capacity to survive and adapt to drastic environmental changes including the presence of numerous antimicrobial agents. Mechanisms triggering this adaptation remain largely unknown despite important research efforts. Most studies evaluating gene content have so far neglected to analyze the so-called intergenic regions as well as potential antisense RNA molecules. PRINCIPAL FINDINGS: Using high-throughput sequencing technology, we performed an inventory of the whole transcriptome of S. aureus strain N315. In addition to the annotated transcription units, we identified more than 195 small transcribed regions, in the chromosome and the plasmid of S. aureus strain N315. The coding strand of each transcript was identified and structural analysis enabled classification of all discovered transcripts. RNA purified at four time-points during the growth phase of the bacterium allowed us to define the temporal expression of such transcripts. A selection of 26 transcripts of interest dispersed along the intergenic regions was assessed for expression changes in the presence of various stress conditions including pH, temperature, oxidative shocks and growth in a stringent medium. Most of these transcripts showed expression patterns specific for the defined stress conditions that we tested. CONCLUSIONS: These RNA molecules potentially represent important effectors of S. aureus adaptation and more generally could support some of the epidemiological characteristics of the bacterium
Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus
Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning
- …
