32 research outputs found

    A Survey of Dairy Farm Treatment Practices on Midwest Dairy Farms

    Get PDF
    Judicious antimicrobial use and antimicrobial stewardship have become buzzwords in production animal agriculture over the last few years. While these words are becoming expectations in the industry, very little is understood about their true meaning and the level of implementation of judicious use practices on dairy farms. We conducted an investigation on 85 dairy farms in the Midwest to document drug use practices on these farms. Our results indicate that most farms are doing an adequate job of implementing judicious practices, but there is room for improvement to meet expectations of regulatory officials and consumers

    Utilization of Liquid Chromatography/Mass Spectrometry to Detect Drug Residues in Milk: Applications for Research and Commercial Dairying

    Get PDF
    Prevention of drug residues in milk is a daily endeavor on dairy farms. There is increasing scrutiny from the public and government when it comes to drug residues in milk. Drug residues can result from simple human errors, disease processes not allowing for normal clearance of a drug, or malicious activity. The testing methodologies used to detect drug residues have become more sensitive with many tests available that can detect drug levels below ten parts per billion (ppb)

    Topical Flunixin Meglumine Effects on Pain Associated Biomarkers after Dehorning

    Get PDF
    Twenty-four calves were dehorned and treated with either topical flunixin meglumine formulated for systemic absorption or a placebo. Biomarkers associated with pain were evaluated for up to 72 hour after the dehorning procedure. Plasma cortisol concentrations, 90 minutes post-dehorning, and mechanical nociception threshold at the control site were the only tested biomarkers where a significant difference was demonstrated. No other differences of biomarkers between the two dehorned groups were observed for any time points. Although this product is easy to dose and dispense, its effects on pain biomarkers appears to be negligible

    Molecular epidemiology of coagulase-negative Staphylococcus species isolated at different lactation stages from dairy cattle in the United States

    Get PDF
    Background Coagulase negative Staphylococcus (CNS) species are currently the most prevalent intra-mammary pathogens causing subclinical mastitis and occasional clinical mastitis or persistent infection in lactating dairy cattle. More than 10 CNS species have been identified, but they are generally managed as one group on most dairies in the United States. However, improved management decisions and treatment outcomes may be achieved with better understanding of the prevalent species, pathogenicity and strain diversity within and across dairies. Methodology A total of 604 CNS isolates were cultured from milk samples collected during a dry-cow treatment clinical trial conducted on 6 dairy herds in 4 states in the US. All the study cows were randomized to receive 1 of the 3 different intra-mammary antimicrobial infusions (Quatermaster, Spectramast DC or ToMorrow Dry Cow) at dry-off. Milk samples were collected at dry-off, calving (0–6 days in milk, DIM), post-calving (7–13 DIM) and at mastitis events within the first 100 DIM. The CNS isolates were identified to species level by partial sequencing of the rpoβ gene, and genetic relatedness within species was investigated by phylogenetic analysis of the pulse-field gel electrophoresis profiles of the isolates. Results The major CNS species identified were S. chromogenes (48.3%), S. haemolyticus (17.9%), S. simulans and S. epidermidis (each at 6.5%). Other CNS species identified at lower frequencies included S. hominis, S. auricularis, S. sciuri, S. spp KS-SP, S. capitis, S. cohnii, S. warneri, S. pasteuri, S. xylosus, S. hyicus, S. equorum, S. microti, S. rostri, S. gallinarum, S. saprophyticus and S. succinus. Phylogenetic analyses of the major species types demonstrated an association between genetic relatedness and epidemiological distributions of S. chromogenes, S. simulans, S. haemolyticus and S. auricularis. Additionally, identical strains of S. chromogenes and S. simulans were isolated from the same udder quarter of several cows at consecutive sample stages. The rest of the minor species had no deducible genetic-epidemiological link. Discussion The observed association between genetic and epidemiological distributions indicated animal-adapted nature of four CNS species, suggesting possible host-adapted and environmental transmission of these species. Multi-stage isolation of the same udder quarter strain was evidence for chronic intra-mammary infection. Conclusion The different CNS species and strains circulating on US dairy herds were genetically diverse. Four species identified were likely udder-adapted pathogens, 2 of which caused persistent infection. Our findings are important in guiding the design of effective mastitis control strategies

    A Phase II Trial of Sorafenib in Metastatic Melanoma with Tissue Correlates

    Get PDF
    Sorafenib monotherapy in patients with metastatic melanoma was explored in this multi-institutional phase II study. In correlative studies the impact of sorafenib on cyclin D1 and Ki67 was assessed. mutational status and clinical activity. No significant changes in expression of cyclin D1 or Ki67 with sorafenib treatment were demonstrable in the 15 patients with pre-and post-treatment tumor samples. mutational status of the tumor was not associated with clinical activity and no significant effect of sorafenib on cyclin D1 or Ki67 was seen, suggesting that sorafenib is not an effective BRAF inhibitor or that additional signaling pathways are equally important in the patients who benefit from sorafenib

    Bacterial Community Profiling of Milk Samples as a Means to Understand Culture-Negative Bovine Clinical Mastitis

    Get PDF
    Inflammation and infection of bovine mammary glands, commonly known as mastitis, imposes significant losses each year in the dairy industry worldwide. While several different bacterial species have been identified as causative agents of mastitis, many clinical mastitis cases remain culture negative, even after enrichment for bacterial growth. To understand the basis for this increasingly common phenomenon, the composition of bacterial communities from milk samples was analyzed using culture independent pyrosequencing of amplicons of 16S ribosomal RNA genes (16S rDNA). Comparisons were made of the microbial community composition of culture negative milk samples from mastitic quarters with that of non-mastitic quarters from the same animals. Genomic DNA from culture-negative clinical and healthy quarter sample pairs was isolated, and amplicon libraries were prepared using indexed primers specific to the V1–V2 region of bacterial 16S rRNA genes and sequenced using the Roche 454 GS FLX with titanium chemistry. Evaluation of the taxonomic composition of these samples revealed significant differences in the microbiota in milk from mastitic and healthy quarters. Statistical analysis identified seven bacterial genera that may be mainly responsible for the observed microbial community differences between mastitic and healthy quarters. Collectively, these results provide evidence that cases of culture negative mastitis can be associated with bacterial species that may be present below culture detection thresholds used here. The application of culture-independent bacterial community profiling represents a powerful approach to understand long-standing questions in animal health and disease

    Diacylglycerol triggers Rim101 pathway dependent necrosis in yeast: a model for lipotoxicity

    Get PDF
    The loss of lipid homeostasis can lead to lipid overload and is associated with a variety of disease states. However, little is known as to how the disruption of lipid regulation or lipid overload affects cell survival. In this study we investigated how excess diacylglycerol (DG), a cardinal metabolite suspected to mediate lipotoxicity, compromises the survival of yeast cells. We reveal that increased DG achieved by either genetic manipulation or pharmacological administration of 1,2-dioctanoyl-sn-glycerol (DOG) triggers necrotic cell death. The toxic effects of DG are linked to glucose metabolism and require a functional Rim101 signaling cascade involving the Rim21 dependent sensing complex and activation of a calpain-like protease. The Rim101 cascade is an established pathway that triggers a transcriptional response to alkaline or lipid stress. We propose that the Rim101 pathway senses DG-induced lipid perturbation and conducts a signaling response that either facilitates cellular adaptation or triggers lipotoxic cell death. Using established models of lipotoxicity i.e. high fat diet in Drosophila and palmitic acid administration in cultured human endothelial cells, we present evidence that the core mechanism underlying this calpain-dependent lipotoxic cell death pathway is phylogenetically conserved

    Evaluating Ruminal and Small Intestinal Morphology and Microbiota Composition of Calves Fed a <i>Macleaya cordata</i> Extract Preparation

    No full text
    The objective was to determine the impact of feeding MCE on ruminal and intestinal morphology and microbiota composition of calves. A total of 10 male and 10 female crossbred (dairy Ă— beef) calves (6 d of age) were assigned randomly to control (CTL; n = 10) or MCE-supplemented (TRT; n = 10) groups. The MCE was fed in the milk replacer and top-dressed on the calf starter during pre-weaning (6 to 49 d) and post-weaning (50 to 95 d) periods, respectively. Calves were slaughtered at 95 d to collect rumen and intestinal samples to determine volatile fatty acid (VFA) profile, mucosal morphology, and microbiota composition. The effects of MCE were analyzed by accounting for the sex and breed effects. Feeding MCE increased rumen papillae length (p = 0.010) and intestinal villus height: crypt depth (p < 0.030) compared to CTL but did not affect rumen VFA profile. The TRT had a negligible impact on microbial community composition in both the rumen and the jejunum. In conclusion, feeding MCE from birth through weaning can improve ruminal and small intestinal mucosa development of calves despite the negligible microbiota composition changes observed post-weaning
    corecore