60 research outputs found

    Severe Airway Epithelial Injury, Aberrant Repair and Bronchiolitis Obliterans Develops after Diacetyl Instillation in Rats

    Get PDF
    Bronchiolitis obliterans (BO) is a fibrotic lung disease that occurs in a variety of clinical settings, including toxin exposures, autoimmunity and lung or bone marrow transplant. Despite its increasing clinical importance, little is known regarding the underlying disease mechanisms due to a lack of adequate small animal BO models. Recent epidemiological studies have implicated exposure to diacetyl (DA), a volatile component of artificial butter flavoring, as a cause of BO in otherwise healthy factory workers. Our overall hypothesis is that DA induces severe epithelial injury and aberrant repair that leads to the development of BO. Therefore, the objectives of this study were 1) to determine if DA, delivered by intratracheal instillation (ITI), would lead to the development of BO in rats and 2) to characterize epithelial regeneration and matrix repair after ITI of DA.Male Sprague-Dawley rats were treated with a single dose of DA (125 mg/kg) or sterile water (vehicle control) by ITI. Instilled DA resulted in airway specific injury, followed by rapid epithelial regeneration, and extensive intraluminal airway fibrosis characteristic of BO. Increased airway resistance and lung fluid neutrophilia occurred with the development of BO, similar to human disease. Despite rapid epithelial regeneration after DA treatment, expression of the normal phenotypic markers, Clara cell secretory protein and acetylated tubulin, were diminished. In contrast, expression of the matrix component Tenascin C was significantly increased, particularly evident within the BO lesions.We have established that ITI of DA results in BO, creating a novel chemical-induced animal model that replicates histological, biological and physiological features of the human disease. Furthermore, we demonstrate that dysregulated epithelial repair and excessive matrix Tenacin C deposition occur in BO, providing new insights into potential disease mechanisms and therapeutic targets

    Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research

    Get PDF
    Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Peer Reviewed: Chromium and Sediment Toxicity

    No full text

    Development of an Evidence-Based Risk Assessment Framework

    No full text
    Assessment of potential human health risks associated with environmental and other agents requires careful evaluation of all available and relevant evidence for the agent of interest, including both data-rich and data-poor agents. With the advent of new approach methodologies in toxicological risk assessment, guidance on integrating evidence from mul-tiple evidence streams is needed to ensure that all available data is given due consideration in both qualitative and quantitative risk assessment. The present report summarizes the discussions among academic, government, and private sector participants from North America and Europe in an international workshop convened to explore the development of an evidence-based risk assessment framework, taking into account all available evidence in an appropriate manner in order to arrive at the best possible characterization of potential human health risks and associated uncertainty. Although consensus among workshop participants was not a specific goal, there was general agreement on the key consider-ations involved in evidence-based risk assessment incorporating 21st century science into human health risk assessment. These considerations have been embodied into an overarching prototype framework for evidence integration that will be explored in more depth in a follow-up meeting.publishe
    corecore