49 research outputs found

    Schistosomiasis vaccine discovery using immunomics

    Get PDF
    The recent publication of the Schistosoma japonicum and S. mansoni genomes has expanded greatly the opportunities for post-genomic schistosomiasis vaccine research. Immunomics protein microarrays provide an excellent application of this new schistosome sequence information, having been utilised successfully for vaccine antigen discovery with a range of bacterial and viral pathogens, and malaria

    Of monkeys and men: immunomic profiling of sera from humans and non-human primates resistant to schistosomiasis reveals novel potential vaccine candidates.

    Get PDF
    Schistosoma haematobium affects more than 100 million people throughout Africa and is the causative agent of urogenital schistosomiasis. The parasite is strongly associated with urothelial cancer in infected individuals and as such is designated a group I carcinogen by the International Agency for Research on Cancer. Using a protein microarray containing schistosome proteins, we sought to identify antigens that were the targets of protective IgG1 immune responses in S. haematobium-exposed individuals that acquire drug-induced resistance (DIR) to schistosomiasis after praziquantel treatment. Numerous antigens with known vaccine potential were identified, including calpain (Smp80), tetraspanins, glutathione-S-transferases, and glucose transporters (SGTP1), as well as previously uncharacterized proteins. Reactive IgG1 responses were not elevated in exposed individuals who did not acquire DIR. To complement our human subjects study, we screened for antigen targets of rhesus macaques rendered resistant to S. japonicum by experimental infection followed by self-cure, and discovered a number of new and known vaccine targets, including major targets recognized by our human subjects. This study has further validated the immunomics-based approach to schistosomiasis vaccine antigen discovery and identified numerous novel potential vaccine antigens

    Multiple vaccinations with UV- attenuated cercariae in pig enhance protective immunity against Schistosoma japonicum infection as compared to single vaccination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis japonica is a major public health problem in the endemic areas of China, the Philippines, and Indonesia. To date, a vaccine has not been developed against this disease but immunization with UV-attenuated cercariae can induce a high level of protective immunity in Landrace/Yorkshire/Duroc crossbred pigs. To compare the efficacy of a single vaccination and multiple vaccinations with UV-attenuated <it>Schistosoma japonicum </it>cercariae, two groups of pigs received either one or three exposures to 10,000 cercariae attenuated with 400 μw UV.</p> <p>Results</p> <p>Pigs with a single immunization had a 59.33% reduction in adult worm burden, a 89.87% reduction in hepatic eggs and a 86.27% reduction in fecal eggs at eight weeks post-challenge (<it>P </it>< 0.01). After three immunizations, protection increased to 77.62%, 88.8% and 99.78% reduction in adult worms, hepatic eggs and fecal eggs, respectively (<it>P </it>< 0.01). Humoral and cellular immunological parameters measured indicated that schistosome-specific IgG1 and IgG2 levels in the vaccinated groups were higher than in the infection-control group. Triple vaccinations resulted in higher levels of antibodies, especially IgG2, compared with a single vaccination and IFN-γ levels increased with repeated immunization with UV-irradiated cercariae.</p> <p>Conclusion</p> <p>The high levels of protection against <it>S. japonicum </it>infection can be achieved with a UV-attenuated vaccine in pigs, and that three vaccinations were possibly more effective than a single vaccination. Moreover, triple vaccinations evoked a more vigorous IFN-γ response and a stronger antibody-mediated response, especially an increase in the levels of IgG2 antibodies.</p

    Transplantation of schistosome sporocysts between host snails: A video guide.

    Get PDF
    Schistosomiasis is an important parasitic disease, touching roughly 200 million people worldwide. The causative agents are different Schistosoma species. Schistosomes have a complex life cycle, with a freshwater snail as intermediate host. After infection, sporocysts develop inside the snail host and give rise to human dwelling larvae. We present here a detailed step-by-step video instruction in English, French, Spanish and Portuguese that shows how these sporocysts can be manipulated and transferred from one snail to another. This procedure provides a technical basis for different types of ex vivo modifications, such as those used in functional genomics studies

    Transplantation of schistosome sporocysts between host snails::A video guide

    Get PDF
    Schistosomiasis is an important parasitic disease, touching roughly 200 million people worldwide. The causative agents are different Schistosoma species. Schistosomes have a complex life cycle, with a freshwater snail as intermediate host. After infection, sporocysts develop inside the snail host and give rise to human dwelling larvae. We present here a detailed step-by-step video instruction in English, French, Spanish and Portuguese that shows how these sporocysts can be manipulated and transferred from one snail to another. This procedure provides a technical basis for different types of ex vivo modifications, such as those used in functional genomics studies

    Field Testing Integrated Interventions for Schistosomiasis Elimination in the People\u27s Republic of China: Outcomes of a Multifactorial Cluster-Randomized Controlled Trial

    Get PDF
    Despite significant progress, China faces the challenge of re-emerging schistosomiasis transmission in currently controlled areas due, in part, to the presence of a range of animal reservoirs, notably water buffalo and cattle, which can harbor Schistosoma japonicum infections. Environmental, ecological and social-demographic changes in China, shown to affect the distribution of oncomelanid snails, can also impact future schistosomiasis transmission. In light of their importance in the S. japonicum, lifecycle, vaccination has been proposed as a means to reduce the excretion of egg from cattle and buffalo, thereby interrupting transmission from these reservoir hosts to snails. A DNA-based vaccine (SjCTPI) our team developed showed encouraging efficacy against S. japonicum in Chinese water buffaloes. Here we report the results of a double-blind cluster randomized trial aimed at determining the impact of a combination of the SjCTPI bovine vaccine (given as a prime-boost regimen), human mass chemotherapy and snail control on the transmission of S. japonicum in 12 selected administrative villages around the Dongting Lake in Hunan province. The trial confirmed human praziquantel treatment is an effective intervention at the population level. Further, mollusciciding had an indirect ~50% efficacy in reducing human infection rates. Serology showed that the SjCTPI vaccine produced an effective antibody response in vaccinated bovines, resulting in a negative correlation with bovine egg counts observed at all post-vaccination time points. Despite these encouraging outcomes, the effect of the vaccine in preventing human infection was inconclusive. This was likely due to activities undertaken by the China National Schistosomiasis Control Program, notably the treatment, sacrifice or removal of bovines from trial villages, over which we had no control; as a result, the trial design was compromised, reducing power and contaminating outcome measures. This highlights the difficulties in undertaking field trials of this nature and magnitude, particularly over a long period, and emphasizes the importance of mathematical modeling in predicting the potential impact of control intervention measures. A transmission blocking vaccine targeting bovines for the prevention of S. japonicum with the required protective efficacy would be invaluable in tandem with other preventive intervention measures if the goal of eliminating schistosomiasis from China is to become a reality

    Of monkeys and men:Immunomic profiling of sera from humans and non-human primates resistant to schistosomiasis reveals novel potential vaccine candidates

    Get PDF
    Schistosoma haematobium affects more than 100 million people throughout Africa and is the causative agent of urogenital schistosomiasis. The parasite is strongly associated with urothelial cancer in infected individuals and as such is designated a group I carcinogen by the International Agency for Research on Cancer. Using a protein microarray containing schistosome proteins, we sought to identify antigens that were the targets of protective IgG1 immune responses in S. haematobium-exposed individuals that acquire drug-induced resistance (DIR) to schistosomiasis after praziquantel treatment. Numerous antigens with known vaccine potential were identified, including calpain (Smp80), tetraspanins, glutathione-S-transferases and glucose transporters (SGTP1), as well as previously uncharacterized proteins. Reactive IgG1 responses were not elevated in exposed individuals who did not acquire DIR. To complement our human subjects study, we screened for antigen targets of rhesus macaques rendered resistant to Schistosoma japonicum by experimental infection followed by self-cure, and discovered a number of new and known vaccine targets, including major targets recognised by our human subjects. This study has further validated the immunomics-based approach to schistosomiasis vaccine antigen discovery and identified numerous novel potential vaccine antigens

    Design and use of a schistosome protein microarray to investigate Asian schistosomiasis

    No full text
    corecore